Skip to main content
Log in

Biodamage to Paper by Micromycetes under Experimental Conditions: A Study by Vibrational Spectroscopy Methods

  • SPECTROSCOPY OF CONDENSED MATTER
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

Damage to paper (sulfate pulp, cotton half-stuff, and flax half-stuff) caused by the Aspergillus niger, A. sclerotiorum, and Penicillium chrysogenum fungi is investigated by Raman spectroscopy, Fourier-transform infrared spectroscopy, and scanning electron microscopy. It is shown that the use of application infrared Fourier-transform absorption spectroscopy allows one to identify the initial stages of damage from a decrease in the degree of crystallinity of the cellulose contained in paper. The absorption band near 900 cm–1 is used as an indicator of early stages of damage. An increase in the amide II peak at 1550 cm–1 and spectral changes in the region of valence vibrations of the C–H bonds (2800–3000 cm–1) are observed in the case of heavier damage. The obtained data indicate that the vibrational spectroscopy techniques are promising in the study of damage of archive documents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. F. Pinzari, G. Pasquariello, and A. de Mico, Macromol. Symp. 238, 57 (2006). https://doi.org/10.1002/masy.200650609

    Article  Google Scholar 

  2. S. O. Sequeira, E. J. Cabrita, and F. M. Macedo, Restaurator 35, 181 (2014). https://doi.org/10.1515/rest-2014-0005

    Google Scholar 

  3. Yu. P. Nyuksha, Biological Damage to Paper and Books (Biblioteka RAN, St. Petersburg, 1994) [in Russian].

    Google Scholar 

  4. E. S. Trepova and T. D. Velikova, Usp. Med. Mikol. 16, 87 (2016).

    Google Scholar 

  5. E. S. Trepova and T. D. Velikova, Comprehensive Survey of Repositories, The Toolkit (St. Petersburg, 2013), p. 142 [in Russian].

    Google Scholar 

  6. M. Zotti, A. Ferroni, and P. Calvini, Int. Biodeterior. Biodegrad. 62, 186 (2008). https://doi.org/10.1016/j.ibiod.2008.01.005

    Article  Google Scholar 

  7. P. Vandenabeele, J. Raman Spectrosc. 35, 607 (2004). https://doi.org/10.1002/jrs.1217

    Article  ADS  Google Scholar 

  8. O. Yu. Derkacheva, Fotogr. Izobr. Dokument, No. 4, 23 (2013).

    Google Scholar 

  9. O. Yu. Derkacheva and D. O. Tsypkin, J. Appl. Spectrosc. 84, 1066 (2017).

    Article  ADS  Google Scholar 

  10. G. Ybarra, in Infrared Spectroscopy: Theory, Developments, and Applications, Ed. by D. Cozzolino (Nova Science, New York, 2013), p. 519.

    Google Scholar 

  11. R. Mazzeo, P. Baraldi, R. Lujàn, and C. Fagnano, J. Raman Spectrosc. 35, 678 (2004).

    Article  ADS  Google Scholar 

  12. R. Mazzeo, E. Joseph, S. Prati, and A. Millemaggi, Anal. Chim. Acta 599, 107 (2007).

    Article  Google Scholar 

  13. Yu. A. Anokhin, S. A. Dobrusina, E. M. Lotsmanova, and B. S. Tovbin, in Preserving the Cultural Heritage of Libraries, Archives and Museums, Collection of Articles (St. Petersburg, 2003), p. 192 [in Russian].

    Google Scholar 

  14. A. Zhgun and D. Avdanina, Microbiological Defeat of Tempera Paintings (LAP Lambert Academic, Saarbrücken, 2018) [in Russian].

    Google Scholar 

  15. V. M. Grishkin, S. B. Shigorets, D. Yu. Vlasov, E. A. Miklashevich, A. P. Zhabko, A. M. Kovshov, and A. D. Vlasov, in Biogenic—Abiogenic Interactions in Natural and Anthropogenic Systems, Lect. Notes Earth Syst. Sci. (Springer, Switzerland, 2016), p. 415. https://doi.org/10.1007/978-3-319-24987-2

    Google Scholar 

  16. M. Zotti, A. Ferroni, and P. Calvini, Int. Biodeterior. Biodegrad. 65, 569 (2011). https://doi.org/10.1016/j.ibiod.2010.01.011

    Article  Google Scholar 

  17. S. M. Jacob, J. Raseetha, and V. Kelkar-Mane, Int. J. Conserv. Sci. 8, 607 (2017).

    Google Scholar 

  18. J. Goldstein, D. Newbury, D. Joy, C. Lyman, P. Echlin, E. Lifshin, J. Sawyer, and L. Michael, Scanning Electron Microscopy and X-Ray Microanalysis, 3rd ed. (Springer, Berlin, 2007), p. 89.

    Google Scholar 

  19. T. E. Everhart and R. F. M. Thornley, J. Sci. Instrum. 37, 246 (1960).

    Article  ADS  Google Scholar 

  20. J. H. Wiley and R. H. Atalla, Carbohydr. Res. 160, 113 (1987).

    Article  Google Scholar 

  21. H. G. M. Edwards, D. W. Farwell, and A. C. Williams, Spectrochim. Acta, A 50, 807 (1994).

    Article  ADS  Google Scholar 

  22. U. P. Agarwal, Advances in Lignocellulosics Characterization (Tappi, Atlanta, GA, 1999), Ch. 9, p. 201.

    Google Scholar 

  23. V. M. Glyad, D. A. Ponomarev, and N. K. Politova, Khim. Rastit. Syr’ya, No. 4, 51 (2010).

    Google Scholar 

  24. D. W. Mayo, F. A. Miller, and R. W. Hannah, Course Notes on the Interpretation of Infrared and Raman Spectra (Wiley, Chichester, 2004).

    Book  Google Scholar 

  25. W. E. Huang, M. Li, R. M. Jarvis, R. Goodacre, and S. A. Banwart, Adv. Appl. Microbiol. 70, 153 (2010). https://doi.org/10.1016/S0065-2164(10)70005-8

    Article  Google Scholar 

  26. D. Ciolacu, F. Ciolacu, and V. I. Popa, Cellulose Chem. Technol. 45, 13 (2011).

    Google Scholar 

  27. J. de Gelder, Ph. D. Thesis (Univ. Ghent, Belgium, 2007–2008).

  28. S. Ghosal, J. M. Macher, and K. Ahmed, Environ. Sci. Technol. 46, 6088 (2012). https://doi.org/10.1021/es203782j

    Article  ADS  Google Scholar 

  29. J. Ruiz-Herrera, Arch. Biochem. Biophys. 122, 118 (1967). https://doi.org/10.1016/0003-9861(67)90130-0

    Article  Google Scholar 

  30. M. Mathlouthi and J. L. Koenig, Adv. Carbohydr. Chem. Biochem. 44, 7 (1987).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was performed using the equipment of the Center for Optical and Laser Materials Research and the Center for X-ray Diffraction Studies, as well as the Interdisciplinary Resource Center for Nanotechnology in the Research Park of the St. Petersburg State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Povolotckaia.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Povolotckaia, A.V., Pankin, D.V., Sazanova, K.V. et al. Biodamage to Paper by Micromycetes under Experimental Conditions: A Study by Vibrational Spectroscopy Methods. Opt. Spectrosc. 126, 354–359 (2019). https://doi.org/10.1134/S0030400X19040209

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X19040209

Navigation