Skip to main content
Log in

Transmission Spectra of a Symmetric Photonic Crystal Structure with a High-Permittivity Interstitial Layer

  • PHYSICAL OPTICS
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

Transmission spectra are recorded for a one-dimensional photonic crystal structure with the permittivity of the interstitial (or cavity) layer exceeding the permittivity of layers in Bragg mirrors by many times. It is shown that the transmission can be suppressed almost completely both in the photonic band gap (except for a narrow defect-mode region) and beyond it. Specific features of the energy density distribution of the wave field over the structure are revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding of Flow of Light (Princeton Univ. Press, Princeton, 1995).

    MATH  Google Scholar 

  2. V. I. Belotelov and A. K. Zvezdin, Photonic Crystals and Other Metamaterials (Byuro Kvantum, Moscow, 2006) [in Russian].

    Google Scholar 

  3. D. Biallo, A. D. Orazio, and V. Petruzzelli, J. Eur. Opt. Soc. 2, 07010 (2007).

    Article  Google Scholar 

  4. Yu. V. Gulyaev, A. N. Lagar’kov, and S. A. Nikitov, Vestn. Ross. Akad. Nauk 78, 438 (2008).

    Google Scholar 

  5. S. Ya. Vetrov, A. Yu. Avdeeva, and I. V. Timofeev, J. Exp. Theor. Phys. 113, 755 (2011).

    Article  ADS  Google Scholar 

  6. S. V. Eliseeva and D. I. Sementsov, J. Exp. Theor. Phys. 112, 199 (2011).

    Article  ADS  Google Scholar 

  7. V. Kumar, B. Suthar, J. V. Malik, A. Kumar, Kh. S. Singh, and A. Bhargva, Photon. Optoelectron. 2, 17 (2013).

    Google Scholar 

  8. W. D. Zhou, J. Sabarinathan, P. Bhattarcharya, et al., J. Quant. Electron. 37, 1153 (2001).

    Article  ADS  Google Scholar 

  9. S. V. Eliseeva and D. I. Sementsov, Opt. Spectrosc. 109, 729 (2010).

    Article  ADS  Google Scholar 

  10. V. Kumar, Kh. S. Singh, and S. P. Ojha, Optik 122, 1183 (2011).

    Article  ADS  Google Scholar 

  11. S. G. Moiseev, V. A. Ostatochnikov, and D. I. Sementsov, JETP Lett. 100, 371 (2014).

    Article  ADS  Google Scholar 

  12. A. Bouzidi, D. Bria, M. Azizi, et al., J. Mech. Eng. Sci. 8, 3892 (2017).

    Google Scholar 

  13. J. Heebner, R. Grover, and T. Ibrahim, Optical Microresonators: Theory, Fabrication, and Applications (Springer, London, 2008).

    Google Scholar 

  14. M. L. Gorodetskii, Principles of the Theory of Optical Microresonators (Mosk. Gos. Univ. im. M.V. Lomonosova, Moscow, 2010) [in Russian].

  15. I. Chremmos, O. Schwelb, and N. Uzunoglu, Photonic Microresonator Research and Applications (Springer, London, New York, 2010).

    Book  Google Scholar 

  16. O. G. Vendik, Ferroelectrics in Microwave Engineering (Sovetskoe radio, Moscow, 1979) [in Russian].

  17. Yu. V. Sychev, T. V. Murzina, E. M. Kim, and O. A. Aktsipetrov, Phys. Solid State 47, 150 (2005).

    Article  ADS  Google Scholar 

  18. A. I. Lebedev, Phys. Solid State 55, 1198 (2013).

    Article  ADS  Google Scholar 

  19. V. Grimalsky, S. Koshevaya, J. Escobedo-Alatorre, and M. Tecpoyotl-Torres, J. Electromagn. Anal. Appl. 8, 226 (2016).

    ADS  Google Scholar 

  20. V. K. Novik, I. A. Malyshkina, and N. D. Gavrilova, Ferroelectrics 515, 90 (2017).

    Article  Google Scholar 

  21. M. Born and E. Wolf, Principles of Optics (Pergamon, New York, 1964).

    Google Scholar 

  22. A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley, New York, 1984).

    Google Scholar 

  23. Yu. A. Boikov and T. Claeson, Phys. Solid State 46, 1270 (2004).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported by the Ministry of Education and Science of the Russian Federation, project no. 3.6825.2017/PCh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. I. Sementsov.

Additional information

Translated by A. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorova, I.V., Sementsov, D.I. Transmission Spectra of a Symmetric Photonic Crystal Structure with a High-Permittivity Interstitial Layer. Opt. Spectrosc. 125, 551–556 (2018). https://doi.org/10.1134/S0030400X18100077

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X18100077

Keywords

Navigation