Skip to main content
Log in

Features of Construction of the Fluorescent Microscope for the Study of Epithelial-Mesenchymal Transition of Cells in Vitro

  • Applied Optics
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

An optical luminescent microscope has been developed to monitor the behavior of tumor cells that were modified by GFP and RFP fluorescent proteins and to monitor the formation of metastases in biochips. Images of cells in the light of GFP and RFP fluorescence proteins, as well as in the photography mode, are recorded in the microscope by an noncooled CMOS matrix at the excitation of luminescence by blue and green LEDs and illumination of cells with white LEDs, respectively. The obtained fluorescent images and photos in white light are recorded by the matrix in the same coordinate system and do not require additional processing for combination. The power of irradiation of cells with LEDs does not exceed 50 μW/mm2 at an exposure time of 1 s, which is an order of magnitude lower than the radiation power causing photodestruction and phototoxicity of cells during long-term studies. Relative parameters of the optical channel of the luminescent microscope have been introduced that allow comparing the sensitivity of the recording system and the minimum power level of the radiation that excites luminescence for optical elements with different spectral characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Dixit and R. Cyr, Plant J. 36, 280 (2003). doi 10.1046/j.1365-313X.2003.01868.x

    Article  Google Scholar 

  2. H. Schneckenburger, P. Weber, M. Wagner, T. Bruns, V. Richte, S. Schickinger, and R. Wittig, Photon. Lasers Med. 1, 35 (2012). doi 10.1515/plm-2011-0011

    Article  Google Scholar 

  3. M. M. Frigault, J. Lacoste, J. L. Swift, and C. M. Brown, J. Cell Sci. 122, 753 (2009). doi 10.1242/jcs.033837

    Article  Google Scholar 

  4. B. R. Masters and T. C. So Peter, Opt. Express 8, 2 (2001). doi 10.1364/OE.8.000002

    Article  ADS  Google Scholar 

  5. M. R. Tsai, S. Y. Chen, D. B. Shieh, P. J. Lou, and C. K. Sun, Biomed. Opt. Express 2, 2317 (2011). doi 10.1364/BOE.2.002317

    Article  Google Scholar 

  6. L. V. Doronina-Amitonova, I. V. Fedotov, A. B. Fedotov, K. V. Anokhin, and A. M. Zheltikov, Phys. Usp. 58, 345 (2015). doi 10.3367/UFNr.0185.201504c.0371

    Article  ADS  Google Scholar 

  7. N. M. M. Pires, T. Dong, U. Hanke, and N. Hoivik, Sensors 14, 15458 (2014). doi 10.3390/s140815458

    Article  Google Scholar 

  8. T. R. Samatov, M. U. Shkurnikov, S. A. Tonevitskaya, and A. G. Tonevitsky, Progr. Histochem. Cytochem. 49, 21 (2015). doi 10.1016/j.proghi.2015.01.001

    Article  Google Scholar 

  9. J. Wiedenmann, F. Oswald, and G. U. Nienhaus, Life 61, 1029 (2009). doi 10.1002/iub.256

    Google Scholar 

  10. D. M. Chudakov, M. V. Matz, S. Lukyanov, and K. A. Lukyanov, Physiol. Rev. 90, 1103 (2010). doi 10.1152/physrev.00038.2009

    Article  Google Scholar 

  11. https://doi.org/www.stormoff.ru/fluorescentnaya-mikroskopiya1/

  12. https://doi.org/www.biocompare.com/pfu/10242895/soids/2254335/Microscopes_and_Cell_Imaging_Systems/Live_Cell_Imaging-vmpi_6408=1

  13. P. Gautam, A. Recino, R. D. Foale, J. Zhao, S. U. Gan, M. Wallberg, R. Calne, and A. Lever, J. Gene Med. 18, 312 (2016). doi 10.1002/jgm.2900

    Article  Google Scholar 

  14. H. Schneckenburger, P. Weber, M. Wagner, S. Schickinger, V. Richter, T. Bruns, W. S. L. Strauss, and R. Witting, J. Microsc. 245, 311 (2012). doi 10.1111/ j.1365-2818.2011.03576.x

    Article  Google Scholar 

  15. Z. Schilling, E. Frank, V. Magidson, J. Wason, J. Lončarek, K. Boyer, J. Wen, and A. Khodjakov, J. Microsc. 246, 160 (2012). doi 10.1111/j.1365-2818.2012.03605.x

    Article  Google Scholar 

  16. https://doi.org/evrogen.ru/protein-descriptions/TurboGFPdescription.pdf

  17. A. A. Poloznikov, A. A. Zakhariants, S. V. Nikulin, N. A. Smirnova, D. M. Hushpulian, I. N. Gaisina, A. G. Tonevitsky, V. I. Tishkov, and I. G. Gazaryan, Biochimie 133, 74 (2016). doi 10.1016/j.biochi. 2016.12.004

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Kindeeva.

Additional information

Original Russian Text © K.A. Fomicheva, O.V. Kindeeva, V.A. Petrov, A.A. Ivanov, A.A. Poloznikov, B.Ya. Alekseev, M.Yu. Shkurnikov, 2018, published in Optika i Spektroskopiya, 2018, Vol. 125, No. 1, pp. 129–136.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fomicheva, K.A., Kindeeva, O.V., Petrov, V.A. et al. Features of Construction of the Fluorescent Microscope for the Study of Epithelial-Mesenchymal Transition of Cells in Vitro. Opt. Spectrosc. 125, 137–143 (2018). https://doi.org/10.1134/S0030400X18070093

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X18070093

Navigation