Skip to main content
Log in

Photochromic Properties and Surface Enhanced Raman Scattering Spectra of Indoline Spiropyran in Silver-Based Nanocomposite Films

  • Condensed-Matter Spectroscopy
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The structure and photochromic transformations of composite organometallic nanosystems composed of Ag nanoparticles covered with a layer of indoline-spiropyran (ISP) molecules from solutions were studied by spectrophotometry, surface Raman scattering spectroscopy (SERS) and quantum chemistry. Analysis of experimental data showed that studied nanostructured systems have photochromic properties, manifested in the reversible photo-induced changes both of the electronic-absorption spectra and of the relative intensity of the SERS bands. The open form of ISP, formed in the organometallic nanostructured film as a result of photochromic transformations, has an adsorption geometry, and, possibly, a conformation different from that formed as a result of chemisorption of ISP molecules on silver colloids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. L. Feringa, Molecular Switches (Wiley, Weinheim, 2001).

    Book  Google Scholar 

  2. H. Duerr and H. Bouas-Laurent, Photochromism. Molecules and Systems (Elsevier, Amsterdam, 1990).

    Google Scholar 

  3. V. I. Minkin, Chem. Rev. 104, 2751 (2004).

    Article  Google Scholar 

  4. B. S. Luk’yanov and M. B. Luk’yanova, Chem. Heterocycl. Compd. 41, 281 (2005).

    Article  Google Scholar 

  5. S. Ì. Aldoshin, Russ. Chem. Rev. 59, 663 (1990).

    Article  ADS  Google Scholar 

  6. A. S. Kholmanskii and K. M. Dyumaev, Russ. Chem. Rev. 56, 136 (1987).

    Article  ADS  Google Scholar 

  7. S. Schlucker, Angew. Chem., Int. Ed. Engl. 53, 2 (2014).

    Article  Google Scholar 

  8. K. Yoda, T. Ohzeki, T. Yuzawa, and H. Takahashi, Spectrochim. Acta, A 45, 855 (1989).

    Article  ADS  Google Scholar 

  9. J. Aubard, C. Mbossa, J. P. Bertinge, R. Dubest, G. Levi, E. Boshet, and R. Guglielmetti, Mol. Cryst. Liq. Cryst. Sci. Technol. 246, 275 (1994).

    Article  Google Scholar 

  10. S. A. Maskevich, G. T. Vasilyuk, G. A. Gachko, L. N. Kivach, and D. A. Oparin, J. Appl. Spectrosc 63, 67 (1996).

    Article  ADS  Google Scholar 

  11. G. T. Vasilyuk, S. A. Maskevich, S. G. Podtynchenko, V. I. Stepuro, B. S. Luk’yanov, and Yu. S. Alekseenko, J. Appl. Spectrosc. 69, 344 (2002).

    Article  Google Scholar 

  12. G. T. Vasilyuk, S. A. Maskevich, A. E. German, I. F. Sveklo, B. S. Lukyanov, and L. A. Ageev, High Energy Chem. 43, 521 (2009).

    Article  Google Scholar 

  13. M. Piantek, G. Schulze, and M. Koch, J. Am. Chem. Soc. 131, 12729 (2009).

    Article  Google Scholar 

  14. S. M. Morton, E. Ewusi-Annan, and L. Jensen, Phys. Chem. Chem. Phys. 11, 7424 (2009).

    Article  Google Scholar 

  15. R. Yasukuni, R. Boubekri, J. Grand, N. Felidj, F. Maurel, R. Metivier, K. Nakatani, P. Yu, and J. Aubard, J. Phys. Chem. C 116, 16063 (2012).

    Article  Google Scholar 

  16. A. Spangenberg, R. Metivier, R. Yasukuni, K. Shibata, A. Brosseau, J. Grand, J. Aubard, P. Yu, T. Asahi, and K. Nakatani, Phys. Chem. Chem. Phys. 15, 670 (2013).

    Article  Google Scholar 

  17. T. C. Pijper, T. Kudernac, W. Browne, and B. L. Feringa, J. Phys. Chem. C 117, 17623 (2013).

    Article  Google Scholar 

  18. A. Nitzan and L. E. Brus, J. Chem. Phys. 74, 5321 (1981).

    Article  ADS  Google Scholar 

  19. A. Nitzan and L. E. Brus, J. Chem. Phys. 75, 2205 (1981).

    Article  ADS  Google Scholar 

  20. P. Das and H. Metiu, J. Phys. Chem. 89, 4680 (1985).

    Article  Google Scholar 

  21. K. Ueno and H. Misawa, J. Photochem. Photobiol. C 15, 31 (2013).

    Article  Google Scholar 

  22. S. Linic, U. Aslam, C. Boerigter, and M. Morabito, Nat. Mater. 14, 567 (2015).

    Article  ADS  Google Scholar 

  23. P. C. Lee and D. Meisel, J. Phys. Chem. 86, 3391 (1982).

    Article  Google Scholar 

  24. C. N. Lok, Chi. M. Ho, R. Chen, Q. Y. He, W. Y. Yu, H. Sun, P. K. H. Tam, J. F. Chiu, and C. M. Che, J. Biol. Inorg. Chem. 12, 527 (2007).

    Article  Google Scholar 

  25. G. T. Vasilyuk, V. F. Askirka, A. E. German, J. F. Sveklo, V. M. Yasinskii, A. A. Yaroshevich, O. I. Kobeleva, T. M. Valova, A. O. Ayt, V. A. Barachevsky, V. N. Yarovenko, M. M. Krayushkin, and S. A. Maskevich, J. Appl. Spectrosc. 84, 588 (2017).

    Article  ADS  Google Scholar 

  26. S. A. Maskevich, Extended Abstract of Doctoral Dissertation (Belorus. State Univ., Minsk, 1995).

    Google Scholar 

  27. I. R. Nabiev, R. G. Efremov, and G. D. Chumanov, Sov. Phys. Usp. 31, 241 (1988).

    Article  ADS  Google Scholar 

  28. A. M. Erkabaev, S. E. Popov, and O. V. Bushkova, Butler. Soobshch. 30, 26 (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Maskevich.

Additional information

Original Russian Text © S.A. Maskevich, G.T. Vasilyuk, V.F. Askirka, N.D. Strekal’, B.S. Luk’yanov, A.G. Starikov, A.A. Starikova, M.B. Luk’yanova, A.D. Pugachev, V.I. Minkin, 2018, published in Optika i Spektroskopiya, 2018, Vol. 124, No. 6, pp. 783–789.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maskevich, S.A., Vasilyuk, G.T., Askirka, V.F. et al. Photochromic Properties and Surface Enhanced Raman Scattering Spectra of Indoline Spiropyran in Silver-Based Nanocomposite Films. Opt. Spectrosc. 124, 814–820 (2018). https://doi.org/10.1134/S0030400X18060164

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X18060164

Navigation