Skip to main content
Log in

Electronic Transition Dipole Moments in Relativistic Coupled-Cluster Theory: the Finite-Field Method

  • Spectroscopy of Atoms and Molecules
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The determination of the matrix elements of single-electron operators for the transitions between electronic states (primarily, the dipole moments of electron transitions) is one of the critical problems in simulating the atomic and molecular spectra. In this study, the efficiency of a simple version of the finite-field method for calculating these values within the Fock-space coupled-cluster theory has been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. L. Bohn, A. M. Rey, and J. Ye, Science 357, 1002 (2017). doi 10.1126/science.aam6299

    Article  MathSciNet  ADS  Google Scholar 

  2. E. A. Pazyuk, A. V. Zaitsevskii, A. V. Stolyarov, M. Tamanis, and R. Ferber, Russ. Chem. Rev. 84, 1001 (2015). doi 10.1070/RCR4534

    Article  ADS  Google Scholar 

  3. K. Bergmann, N. V. Vitanov, and B. W. Shore, J. Chem. Phys. 142, 170901 (2015). doi 10.1063/1.4916903

    Article  ADS  Google Scholar 

  4. A. Stolyarov, in Progress in Photon Science, Ed. by K. Yamanouchi, Springer Ser. Chem. Phys. 115, 169 (2017). doi 0.1007/978-3-319-52431-3_1610.1007/978-3-319-52431-3_16

    Article  Google Scholar 

  5. R. J. Bartlett and M. Musiał, Rev. Mod. Phys. 79, 291 (2007). doi 0.1103/RevModPhys.79.291

    Article  ADS  Google Scholar 

  6. D. Lyakh, M. Musiał, V. Lotrich, and R. Bartlett, Chem. Rev. 112, 182 (2012). doi 0.1021/cr2001417

    Article  Google Scholar 

  7. M. Kállay and J. Gauss, J. Chem. Phys. 121, 9257 (2004). doi 0.1063/1.1805494

    Article  ADS  Google Scholar 

  8. A. Zaitsevskii and A. P. Pychtchev, Eur. Phys. J. D 4, 303 (1998). doi 0.1007/s100530050213

    Article  ADS  Google Scholar 

  9. M. Tamanis, M. Auzinsh, I. Klincare, O. Nikolayeva, R. Ferber, A. Zaitsevskii, E. A. Pazyuk, and A. V. Stolyarov, J. Chem. Phys. 109, 6725 (1998). doi 0.1063/1.477350

    Article  ADS  Google Scholar 

  10. A. A. Medvedev, A. V. Stolyarov, A. Zaitsevskii, and E. Eliav, Nonlin. Phenom. Complex Syst. 20, 205 (2017).

    Google Scholar 

  11. T. A. Isaev, A. Zaitsevskii, and E. Eliav, J. Phys. B 50, 225101–1 (2017). doi doi 10.1088/1361-6455/aa8f34

    Article  ADS  Google Scholar 

  12. E. Eliav, U. Kaldor, and Y. Ishikawa, Phys. Rev. A 49, 1724 (1994). doi 0.1103/PhysRevA.49.1724

    Article  ADS  Google Scholar 

  13. V. Hurtubise and K. F. Freed, Adv. Chem. Phys. 83, 465 (1993). doi 10.1002/9780470141410.ch6

    Google Scholar 

  14. B. K. Sahoo, S. Majumder, H. Merlitz, R. Chaudhuri, B. P. Das, and D. Mukherjee, J. Phys. B 39, 355 (2006). doi 10.1088/0953-4075/39/2/010

    Article  ADS  Google Scholar 

  15. N. S. Mosyagin, A. Zaitsevskii, and A. V. Titov, Int. Rev. At. Mol. Phys. 1, 63 (2010).

    Google Scholar 

  16. A. Zaitsevskii, N. S. Mosyagin, A. V. Stolyarov, and E. Eliav, Phys. Rev. A 96, 022516–1 (2017). doi 10.1103/PhysRevA.96.022516

    Article  ADS  Google Scholar 

  17. R. Bast, T. Saue, L. Visscher, H. J. A. Jensen, V. Bakken, K. G. Dyall, et al., DIRAC, a Relativistic ab initio Electronic Structure Program, Release DIRAC15(2015). http://www.diracprogram.org.

    Google Scholar 

  18. R. W. Field, D. O. Harris, and T. Tanaka, J. Mol. Spectrosc. 57, 107 (1975). doi 0.1016/0022-2852(75)90045-4

    Article  ADS  Google Scholar 

  19. L. A. Kaledin et al., J. Mol. Spectrosc. 197, 289 (1999). doi 10.1006/jmsp.1999.7909

    Article  ADS  Google Scholar 

  20. P. J. Dagdigian, H. W. Cruse, and R. N. Zare, J. Chem. Phys. 60, 2330 (1974). doi 10.1063/1.1681366

    Article  ADS  Google Scholar 

  21. J. E. Sansonetti and W. C. Martin, J. Phys. Chem. Ref. Data 34, 1559 (2005). doi 10.1063/1.1800011

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Zaitsevskii.

Additional information

Original Russian Text © A.V. Zaitsevskii, L.V. Skripnikov, A.V. Kudrin, A.V. Oleinichenko, E. Eliav, A.V. Stolyarov, 2018, published in Optika i Spektroskopiya, 2018, Vol. 124, No. 4, pp. 435–440.

Conference on Precision Atomic–Molecular Spectroscopy, November 13–14, 2017, Petersburg Nuclear Physics Institute, National Research Centre Kurchatov Institute, Gatchina, Russia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaitsevskii, A.V., Skripnikov, L.V., Kudrin, A.V. et al. Electronic Transition Dipole Moments in Relativistic Coupled-Cluster Theory: the Finite-Field Method. Opt. Spectrosc. 124, 451–456 (2018). https://doi.org/10.1134/S0030400X18040215

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X18040215

Navigation