Skip to main content
Log in

X-Ray Spectral Studies of the Interface Interaction in CuOx/MWCNTs Nanocomposite

Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

Results of a comprehensive study of the interface interaction of a nanostructured CuOx and multiwalled carbon nanotubes (MWCNTs) in CuOx/MWCNT nanocomposite by X-ray absorption spectroscopy (XANES, NEXAFS) and X-ray photoelectron spectroscopy (XPS) methods using a synchrotron radiation are presented. It is established that a nanostructured CuOx in CuOx/MWCNT nanocomposite is predominantly formed by CuO and has the form of flakelike particles 200–500 nm in size uniformly dispersed over an array of nanotubes. A chemical interaction of CuOx and nanotubes with formation of covalent carbon–oxygen bonds, which does not lead to a significant destruction of the outer layers of carbon nanotubes, is observed at the interfaces of the nanocomposite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Z. B. Wen, F. Yu, T. You, L. Zhu, L. Zhang, and Y. P. Wu, Mater. Res. Bull. 74, 241 (2016).

    Article  Google Scholar 

  2. H. Wang, Y. Liang, M. Gong, Y. Li, W. Chang, T. Mefford, J. Zhou, J. Wang, T. Regier, F. Wei, and H. Dai, Nat. Commun. 3, 917 (2012).

    Article  ADS  Google Scholar 

  3. J. Zheng, Q. Zhang, X. He, M. Gao, X. Ma, and G. Li, Proc. Eng. 36, 235 (2012).

    Article  Google Scholar 

  4. P. Pannopard, P. Khongpracha, M. Probst, and J. Limtrakul, J. Mol. Graphics Modell. 28, 62 (2009).

    Article  Google Scholar 

  5. K. D. Shitole, R. K. Nainani, and P. Thakur, Defence Sci. J. 63, 435 (2013).

    Article  Google Scholar 

  6. M. Gong, W. Zhou, M.-C. Tsai, J. Zhou, M. Guan, M.-C. Lin, B. Zhang, Y. Hu, D.-Y. Wang, J. Yang, S. J. Pennycook, B.-J. Hwang, and H. Dai, Nat. Commun. 5, 4695 (2014).

    Article  Google Scholar 

  7. R. R. Salunkhe, J. J. Lin, V. Malgras, S. X. Dou, J. H. Kim, and Y. Yamauchi, Nano Energy 11, 211 (2015).

    Article  Google Scholar 

  8. X. Wang, F. Zhang, B. Xia, X. Zhu, J. Chen, S. Qiu, P. Zhang, and J. Li, Solid State Sci. 11, 655 (2009).

    Article  ADS  Google Scholar 

  9. S. N. Nesov, V. V. Bolotov, P. M. Korusenko, S. N. Povoroznyuk, and O. Yu. Vilkov, Phys. Solid State 58, 997 (2016).

    Article  ADS  Google Scholar 

  10. G. E. Yalovega, T. N. Myasoedova, V. A. Shmatko, M. M. Brzhezinskaya, and Yu. V. Popov, Appl. Surf. Sci. 372, 93 (2016).

    Article  ADS  Google Scholar 

  11. V. Shmatko, D. Leontyeva, N. Nevzorova, N. Smirnova, M. Brzhezinskaya, and G. Yalovega, J. Electron Spectrosc. Relat. Phenom. (2017). doi 10.1016/j.elspec.2017.03.016

    Google Scholar 

  12. L. A. Avakyan, A. S. Manukyan, A. A. Mirzakhanyan, E. G. Sharoyan, Y. V. Zubavichus, A. L. Trigub, N. A. Kolpacheva, and L. A. Bugaev, Opt. Spectrosc. 114, 347 (2013).

    Article  ADS  Google Scholar 

  13. A. N. Kravtsova, I. S. Rodina, and A. N. Mansur, Opt. Spectrosc. 96, 853 (2004).

    Article  ADS  Google Scholar 

  14. G. E. Yalovega and A. V. Soldatov, Opt. Spectrosc. 85, 898 (1998).

    ADS  Google Scholar 

  15. A. B. Kuriganova, D. V. Leontyeva, S. Ivanov, A. Bund, and N. V. Smirnova, J. Appl. Electrochem. 46, 1245 (2016).

    Article  Google Scholar 

  16. W. Gudat and C. Kunz, Phys. Rev. Lett. 29, 169 (1972).

    Article  ADS  Google Scholar 

  17. V. V. Mesilov, V. R. Galakhov, B. A. Gizhevskii, A. S. Semenova, D. G. Kellerman, M. Raekers, and M. Neumann, Phys. Solid State 55, 943 (2013).

    Article  ADS  Google Scholar 

  18. B. Ravel and M. Newville, J. Synchrotr. Rad. 12, 537 (2005).

    Article  Google Scholar 

  19. A. Ulyankina, I. Leontyev, O. Maslova, M. Allix, A. Rakhmatullin, N. Nevzorova, R. Valeev, G. Yalovega, and N. Smirnova, Mater. Sci. Semicond. Process 73, 111 (2018).

    Article  Google Scholar 

  20. R. P. Wijesundera, M. Hidaka, K. Koga, J.-Y. Choi, and N. E. Sung, Ceram.-Silikáty 54, 19 (2010).

    Google Scholar 

  21. A. Gaur and B. D. Shrivastava, Acta Phys. Polon. A 121, 647 (2012).

    Article  Google Scholar 

  22. H. Liu, F. Zeng, S. Gao, G. Wang, C. Song, and F. Pan, Phys. Chem. Chem. Phys. 15, 13153 (2013).

    Article  Google Scholar 

  23. V. N. Sivkov, A. M. Ob’edkov, O. V. Petrova, S. V. Nekipelov, K. V. Kremlev, B. S. Kaverin, N. M. Semenov, and S. A. Gusev, Phys. Solid State 57, 197 (2015).

    Article  ADS  Google Scholar 

  24. M. Brzhezinskaya, V. Shmatko, G. Yalovega, A. Krestinin, I. Bashkin, and E. Bogoslavskaja, J. Electron Spectrosc. Relat. Phenom. 196, 99 (2014).

    Article  Google Scholar 

  25. V. V. Bolotov, S. N. Nesov, P. M. Korusenko, and S. N. Povoroznyuk, Phys. Solid State 56, 1899 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. E. Yalovega.

Additional information

Original Russian Text © V.A. Shmatko, A.A. Ulyankina, N.V. Smirnova, G.E. Yalovega, 2018, published in Optika i Spektroskopiya, 2018, Vol. 124, No. 4, pp. 461–466.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shmatko, V.A., Ulyankina, A.A., Smirnova, N.V. et al. X-Ray Spectral Studies of the Interface Interaction in CuOx/MWCNTs Nanocomposite. Opt. Spectrosc. 124, 478–482 (2018). https://doi.org/10.1134/S0030400X18040161

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X18040161

Navigation