Skip to main content
Log in

A tunable optical diode based on gyrotropic metamaterials in the field of ultrasonic waves

  • Nonlinear and Quantum Optics
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The modified Ambartsumyan method of addition of layers is used for solving the problem of oblique light propagation through a layer of gyrotropic metamaterial in the field of two counterpropagating ultrasonic waves. It is shown that the studied system can operate as a tunable optical diode. The possibility of controlling the system parameters by changing the parameters of ultrasonic waves is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals, Molding the Flow of Light (Princeton Univ. Press, Princeton, 2008).

    MATH  Google Scholar 

  2. Metamaterials: Physics and Engineering Explorations, Ed. by N. E. Ziolkowski (Wiley, IEEE, Hoboken, NJ, 2006).

  3. S. A. Ramakrishna and T. M. Grzegorczyk, Physics and Applications of Negative Refractive Index Materials (CRC, Taylor Francis, Boca Raton, FL, 2009).

    Google Scholar 

  4. W. Cai and V. Shalaev, Optical Metamaterials (Springer, Berlin, 2010).

    Book  Google Scholar 

  5. K. Sakoda, Optical Properties of Photonic Crystals (Springer, Berlin, 2001).

    Book  Google Scholar 

  6. M. Maldovan, Nature 503, 209 (2013).

    Article  ADS  Google Scholar 

  7. T. Brunet, A. Merlin, et al., Nat. Mater. 14, 384 (2015).

    Article  ADS  Google Scholar 

  8. N. Fang et al., Nat. Mater. 5, 452 (2006).

    Article  ADS  Google Scholar 

  9. J. Li et al., Nature Mater. 8, 931 (2009).

    Article  ADS  Google Scholar 

  10. T. Brunet, J. Leng, and O. Mondain-Monval, Science 342, 323 (2013).

    Article  ADS  Google Scholar 

  11. J. B. Pendry and J. Li, New J. Phys. 10, 115032 (2008).

    Article  ADS  Google Scholar 

  12. A. N. Norris, J. Acoust. Soc. Am. 125, 839 (2009).

    Article  ADS  Google Scholar 

  13. R. Seeman et al., Rep. Prog. Phys. 75, 016601 (2012).

    Article  ADS  Google Scholar 

  14. T. Brunet et al., Phys. Rev. Lett. 111, 264301 (2013).

    Article  ADS  Google Scholar 

  15. A. Lakhtakia, V. K. Varadan, and V. V. Varadan, Time-Harmonic Fields in Chiral Media (Springer, Berlin, 1989).

    MATH  Google Scholar 

  16. I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-Isotropic Media (Artech House, London, 1994).

    Google Scholar 

  17. A. H. Sihvola, Prog. Electromagn. Res. 9, 45 (1994).

    Google Scholar 

  18. S. Bassiri, C. H. Papas, and N. Engheta, J. Opt. Soc. Am. A 5, 1450 (1988).

    Article  ADS  Google Scholar 

  19. M. P. Silverman and J. Badoz, J. Opt. Soc. Am. A 11, 1894 (1994).

    Article  ADS  Google Scholar 

  20. J. Lekner, Pure Appl. Opt. 5, 417 (1996).

    Article  ADS  Google Scholar 

  21. O. V. Ivanov and D. I. Sementsov, Crystallogr. Rep. 45, 487 (2000).

    Article  ADS  Google Scholar 

  22. A. F. Konstantinova, B. V. Nabatov, E. A. Evdishchenko, and K. K. Konstantinov, Crystallogr. Rep. 47, 815 (2002).

    Article  ADS  Google Scholar 

  23. K. M. Flood and D. L. Jaggard, J. Opt. Soc. Am. A 13, 1395 (1996).

    Article  ADS  Google Scholar 

  24. H. Taouk, J. Opt. Soc. Am. A 14, 2006 (1987).

    Article  ADS  Google Scholar 

  25. N. Wongkasem and A. Akyurtlu, J. Opt. 12, 035101 (2010).

    Article  ADS  Google Scholar 

  26. C-W. Qiu, N. Burokur, S. Zouhd, and L.-W. Li, J. Opt. Soc. Am. A 25, 55 (2008).

    Article  ADS  Google Scholar 

  27. V. R. Tuz and C.-W. Qiu, PIER 103, 139 (2010).

    Article  Google Scholar 

  28. I. O. Zolotovski and D. I. Sementsov, Tech. Phys. 52, 446 (2007).

    Article  Google Scholar 

  29. S. V. Zhukovsky and V. M. Galynsky, J. Opt. A: Pure Appl. Opt. 8, 489 (2006).

    Article  ADS  Google Scholar 

  30. M. A. Baqir, A. A. Syed, and Q. A. Naqvi, PIER 16, 85 (2011).

    Article  Google Scholar 

  31. J. Li, S. Li, Y. Cao, and H. Li, Pacif. Sci. Rev. 14, 63 (2012).

    MathSciNet  Google Scholar 

  32. R.-L. Chern and P.-H. Chang, J. Opt. Soc. Am. B 30, 552 (2013).

    Article  ADS  Google Scholar 

  33. K. J. Lee, J. W. Wu, and K. Kim, Opt. Mater. Express 4, 2542 (2014).

    Article  Google Scholar 

  34. Z. Li, M. Mutlu, and E. Ozbay, J. Opt. 15, 023001 (2013).

    Article  ADS  Google Scholar 

  35. A. H. Gevorgyan, Phys. Rev. E 83, 011702 (2011).

    Article  ADS  Google Scholar 

  36. A. H. Gevorgyan, Phys. Rev. E 85, 021704 (2012).

    Article  ADS  Google Scholar 

  37. A. A. Gevorgyan, Opt. Spectrosc. 91, 779 (2001).

    Article  Google Scholar 

  38. A. A. Gevorgyan, Tech. Phys. 52, 466 (2007).

    Article  Google Scholar 

  39. K. Kim, H. Yoo, D.-H. Lee, and H. Lim, Waves Rand. Comp. Media 16, 75 (2006).

    Article  ADS  Google Scholar 

  40. V. R. Tuz, M. Y. Vidil, and S. L. Prosvirin, J. Opt. 12, 095102 (2010).

    Article  ADS  Google Scholar 

  41. A. A. Gevorgyan, Tech. Phys. 47, 1008 (2002).

    Article  Google Scholar 

  42. M. Scalora, J. P. Dowling, et al., J. Appl. Phys. 76, 2023 (1994).

    Article  ADS  Google Scholar 

  43. L. Poladian, Phys. Rev. E 54, 2963 (1996).

    Article  ADS  Google Scholar 

  44. M. Scalora, D. Tocci, et al., Appl. Phys. Lett. 66, 2324 (1995).

    Article  ADS  Google Scholar 

  45. A. A. Gevorgyan, Tech. Phys. Lett. 29, 819 (2003).

    Article  ADS  Google Scholar 

  46. A. A. Gevorgyan, Tech. Phys. Lett. 34, 22 (2008).

    Article  ADS  Google Scholar 

  47. Z. Yu and Z. Wang, Appl. Phys. Lett. 90, 121133 (2007).

    Article  ADS  Google Scholar 

  48. A. Alberucci and G. Assanto, Opt. Lett. 33, 1641 (2008).

    Article  ADS  Google Scholar 

  49. A. B. Khanikaev and M. J. Steel, Opt. Express 17, 5265 (2009).

    Article  ADS  Google Scholar 

  50. X. Hu, C. Xin, Z. Li, and Q. Gong, New J. Phys. 12, 023029 (2010).

    Article  ADS  Google Scholar 

  51. X.-B. Kang, W. Tan, Z.-S. Wang, Z.-G. Wang, and H. Chen, Chin. Phys. Lett. 27, 074204 (2010).

    Article  ADS  Google Scholar 

  52. H.-X. Da, Z.-Q. Huang, and Z.-Y. Li, J. Appl. Phys. 108, 063505 (2010).

    Article  ADS  Google Scholar 

  53. C. Xue, H. Jiang, and H. Chen, Opt. Express 18, 7479 (2010).

    Article  ADS  Google Scholar 

  54. Q. Wang, F. Xu, Z.-Y. Yu, X.-S. Qian, X.-K. Hu, Y.-G. Lu, and H.-T. Wang, Opt. Express 18, 7340 (2010).

    Article  ADS  Google Scholar 

  55. A. F. Bukhanko, Opt. Spectrosc. 110, 281 (2011).

    Article  ADS  Google Scholar 

  56. S. V. Zhukovsky and A. G. Smirnov, Phys. Rev. A 83, 023818 (2011).

    Article  ADS  Google Scholar 

  57. X. Hu, Z. Li, J. Zhang, H. Yang, Q. Gong, and X. Zhang, Adv. Funct. Mater. 21, 1803 (2011).

    Article  Google Scholar 

  58. K. Xiu-Bao, T. Wei, W. Zhan-Shan, W. Zhi-Guo, and C. Hong, Chin. Phys. Lett. 27, 074204 (2010).

    Article  ADS  Google Scholar 

  59. H.-X. Da, Z.-Q. Huang, and Z.-Y. Li, J. Appl. Phys. 108, 063505 (2010).

    Article  ADS  Google Scholar 

  60. C. Menzel, C. Helgert, C. Rockstuhl, E. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, Phys. Rev. Lett. 104, 253902 (2010).

    Article  ADS  Google Scholar 

  61. M. Kang, J. Chen, H.-X. Cui, Y. Li, and H.-T. Wang, Opt. Express 19, 8347 (2011).

    Article  ADS  Google Scholar 

  62. I. V. Shadrivov, V. A. Fedotov, D. A. Powell, Y. S. Kivshar, and N. I. Zheludev, New J. Phys. 13, 033025 (2011).

    Article  ADS  Google Scholar 

  63. J. Li, J. Zhou, M. Yang, C. Xue, and M. He, Opt. Lett. 11, 030503 (2011).

    Google Scholar 

  64. C. P. Yin, T. B. Wang, and H. Z. Wang, Eur. Phys. J. B 85, 104 (2012).

    Article  ADS  Google Scholar 

  65. H. Zhou, J. Chee, J. Song, and G. Lo, Opt. Express 20, 8256 (2012).

    Article  ADS  Google Scholar 

  66. L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xian, A. M. Weiner, and M. Qi, Science 335, 447 (2012).

    Article  ADS  Google Scholar 

  67. H. Li, Z. Deng, J. Huang, Y. Li, and S. Fu, arXiv:1505.02660v2 [physics.optics] (2015).

  68. K. Jamshidi-Ghaleh, Z. Safari, and F. Moslemi, Eur. Phys. J. D 69, 95 (2015).

    Article  ADS  Google Scholar 

  69. U. S. Hasar, J. J. Barroso, Y. Kaya, T. Karacali, and M. Ertugrul, Photo. Nanostruct. Fund. Appl. 13, 106 (2015).

    Article  ADS  Google Scholar 

  70. Z. Wang, L. Shi, Y. Liu, X. Xu, and X. Zhang, Sci. Rep. 5, 8657 (2015).

    Article  ADS  Google Scholar 

  71. Y. Zhou, Y.-Q. Dong, R.-H. Fan, Q. Hu, R.-W. Peng, and M. Wang, Appl. Phys. Lett. 105, 041114 (2014).

    Article  ADS  Google Scholar 

  72. C. Wang, C.-Z. Zhou, and Z.-Y. Li, Opt. Express 19, 26948 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. Gevorgyan.

Additional information

Original Russian Text © A.H. Gevorgyan, H.K. Gabrielyan, A.R. Mkrtchyan, 2016, published in Optika i Spektroskopiya, 2016, Vol. 121, No. 5, pp. 801–809.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gevorgyan, A.H., Gabrielyan, H.K. & Mkrtchyan, A.R. A tunable optical diode based on gyrotropic metamaterials in the field of ultrasonic waves. Opt. Spectrosc. 121, 749–757 (2016). https://doi.org/10.1134/S0030400X16110114

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X16110114

Navigation