Skip to main content
Log in

Evolution of microwave quantum states in terms of measurable ordered moments of creation and annihilation operators

  • Seventh David Klyshko Memorial Seminar
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The detection of microwave states is complicated by strong thermal noise, which is inevitably introduced by linear amplifiers. We show how to extract from measured data normally or anti-normally ordered moments of photon creation and annihilation operators, the set of which contains complete information on the quantum state of an electromagnetic field. Equations for the evolution of the quantum state are derived in terms of moments. Using this approach, we consider in detail issues of decoherence and thermalization of microwave quantum states. Results are illustrated using the examples of Fock, coherent, squeezed, thermal, and even and odd coherent states (Schrödinger cat states).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Brattke, B. T. N. Varcoe, and H. Walther, Phys. Rev. Lett. 86, 3534 (2001).

    Article  ADS  Google Scholar 

  2. A. A. Houck, D. I. Schuster, J. M. Gambetta, J. A. Schreier, B. R. Johnson, J. M. Chow, L. Frunzio, J. Majer, M. H. Devoret, S. M. Girvin, and R. H. Schoelkopf, Nature 449, 328 (2007).

    Article  ADS  Google Scholar 

  3. G. Romero, J. J. Garcia-Ripoll, and E. Solano, Phys. Rev. Lett. 102, 173602 (2009).

    Article  ADS  Google Scholar 

  4. F. Mallet, M. A. Castellanos-Beltran, H. S. Ku, S. Glancy, E. Knill, K. D. Irwin, G. C. Hilton, L. R. Vale, and K. W. Lehnert, Phys. Rev. Lett. 106, 220502 (2011).

    Article  ADS  Google Scholar 

  5. M. A. Castellanos-Beltran, K. D. Irwin, G. C. Hilton, L. R. Vale, and K. W. Lehnert, Nature Physics 4, 929 (2008).

    Article  ADS  Google Scholar 

  6. N. Bergeal, R. Vijay, V. E. Manucharyan, I. Siddiqi, R. J. Schoelkopf, S. M. Girvin, and M. H. Devoret, Nature Physics 6, 296 (2010).

    Article  ADS  Google Scholar 

  7. E. P. Menzel, F. Deppe, and M. Mariantoni, Phys. Rev. Lett. 105, 100401 (2010).

    Article  ADS  Google Scholar 

  8. M. Mariantoni, E. P. Menzel, and F. Deppe, Phys. Rev. Lett. 105, 133601 (2010).

    Article  ADS  Google Scholar 

  9. C. Eichler, D. Bozyigit, C. Lang, L. Steffen, J. Fink, and A. Wallraff, Phys. Rev. Lett. 106, 220503 (2011).

    Article  ADS  Google Scholar 

  10. R. E. Collin, Foundations for Microwave Engineering (McGraw Hill, New York, 1992).

    Google Scholar 

  11. D. M. Pozar, Microwave Engineering, 3rd. ed. (Wiley, New York, 2005).

    Google Scholar 

  12. M. S. Kim, Phys. Rev. A 56, 3175 (1997).

    Article  ADS  Google Scholar 

  13. W. P. Schleich, Quantum Optics in Phase Space, Ed. by V. P. Yakovlev (Wiley-VCH, New York, 2001; Fizmatlit, Moscow, 2005).

    Chapter  Google Scholar 

  14. M. P. Silva, D. Bozyigit, A. Wallraft, and A. Blais, Phys. Rev. A 82, 043804 (2010).

    Article  ADS  Google Scholar 

  15. A. Wunsche, Quantum Opt. J. Europ. Opt. Soc. B 2, 453 (1990).

    Article  MathSciNet  ADS  Google Scholar 

  16. C. T. Lee, Phys. Rev. A 46, 6097 (1992).

    Article  MathSciNet  ADS  Google Scholar 

  17. U. Herzog, Phys. Rev. A 53, 2889 (1996).

    Article  ADS  Google Scholar 

  18. V. Buzek, G. Adam, and G. Drobny, Phys. Rev. A 54, 804 (1996).

    Article  ADS  Google Scholar 

  19. C. M. Caves, Phys. Rev. D 26, 1817 (1982).

    Article  ADS  Google Scholar 

  20. S. N. Filippov and V. I. Man’ko, Phys. Rev. A 84, 033827 (2011).

    Google Scholar 

  21. V. V. Dodonov, I. A. Malkin, and V. I. Man’ko, Physica A 72, 597 (1974).

    MathSciNet  Google Scholar 

  22. V. V. Dodonov and V. I. Man’ko, Trudy FIAN 183, 182 (1987).

    MathSciNet  Google Scholar 

  23. V. V. Dodonov and V. I. Man’ko, J. Mat. Phys. 35, 4277 (1994).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. E. Wigner, Phys. Rev. 40, 749 (1932).

    Article  ADS  MATH  Google Scholar 

  25. J. E. Moyal, Mat. Proc. Cambridge Phil. Soc. 45, 99 (1949).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. V. V. Dodonov, S. S. Mizrahi, and A. L. de Souza Silva, J. Opt. 2, 271 (2000).

    Google Scholar 

  27. S. Deleglise, I. Dotsenko, C. Sayrin, J. Bernu, M. Brune, J.-M. Raimond, and S. Haroche, Nature 455, 510 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Filippov.

Additional information

Original Russian Text © S.N. Filippov, V.I. Man’ko, 2012, published in Optika i Spektroskopiya, 2012, Vol. 112, No. 3, pp. 405–413.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filippov, S.N., Man’ko, V.I. Evolution of microwave quantum states in terms of measurable ordered moments of creation and annihilation operators. Opt. Spectrosc. 112, 365–372 (2012). https://doi.org/10.1134/S0030400X12030083

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X12030083

Keywords

Navigation