Skip to main content
Log in

Non-Markovian dynamics and quantum jumps

  • Quantum Jumps
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

Experiments with trapped particles have demonstrated the existence of quantum jumps and the discrete nature of single-system dynamics in quantum mechanics. The concept of jumps is also a powerful tool for simulating and understanding open quantum systems. In non-Markovian systems jump probabilities can become negative due to memory effects between the system and its environment. We discuss a recently presented method that can handle both positive and negative probabilities and provides powerful insight into the dynamics of open systems with memory. The key element is a reversed quantum jump to a system state that was, in principle, already destroyed by an earlier normal jump. Instead of using artificial extensions of the system or exploiting hidden variables we take advantage of the information stored in the quantum ensemble itself.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. J. Cook. in Progress in Optics, Ed. by E. Wolf (North-Holland, Amsterdam, 1990), Vol. XXVIII, p. 362.

    Google Scholar 

  2. W. Nagourney, J. Sandberg, and H. Dehmelt, Phys. Rev. Lett. 56, 2797 (1986); W. M. Itano, J. C. Bergquist, and D. J. Wineland, Science 237, 612 (1987).

    Article  ADS  Google Scholar 

  3. S. Gleyzes et al., Nature 446, 297 (2007).

    Article  ADS  Google Scholar 

  4. H. S. Margolis et al., Science 306, 1355 (2004).

    Article  ADS  Google Scholar 

  5. J. Dalibard, Y. Castin, and K. Mølmer, Phys. Rev. Lett. 68, 580 (1992); K. Mølmer, Y. Castin, and J. Dalibard, J. Opt. Soc. Am. B 10, 524 (1993)

    Article  ADS  Google Scholar 

  6. H. Carmichael, An Open System Approach to Quantum Optics (Springer-Verlag, Berlin, 1993); M. B. Plenio and P. L. Knight, Rev. Mod. Phys. 70, 101 (1998).

    Google Scholar 

  7. H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford Univ. Press, Oxford, 2002).

    MATH  Google Scholar 

  8. J. P. Paz and W. H. Zurek, in Proceedings of the 72nd Les Houches Summer School, Ed. by R. Kaiser, C. Westbrook, and F. David (Springer-Verlag, Berlin, 1999), p. 533.

    Google Scholar 

  9. J. Piilo, S. Maniscalco, K. Härkönen, and K.-A. Suominen, Phys. Rev. Lett. 100, 180402 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  10. R. Feynman, in Quantum Implications: Essays in Honor of David Bohm, Ed. by B. J. Hiley and F. D. Peat (Routledge, London, 1987), p. 235.

    Google Scholar 

  11. E. P. Wigner, Phys. Rev. 40, 749 (1932).

    Article  MATH  ADS  Google Scholar 

  12. U. Leonhardt, Measuring the Quantum State of Light (Cambridge Univ. Press, Cambridge, 1997).

    Google Scholar 

  13. J. Maddox, Nature 320, 481 (1986).

    Article  ADS  Google Scholar 

  14. W. Mückenheim, Phys. Rep. 133, 337 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  15. H.-P. Breuer, Phys. Rev. A 70, 012106 (2004).

    Article  ADS  Google Scholar 

  16. W. M. Itano et al., Phys. Rev. A 41, 2295 (1990).

    Article  ADS  Google Scholar 

  17. S. Maniscalco, J. Piilo, and K.-A. Suominen, Phys. Rev. Lett. 97, 130402 (2006).

    Article  ADS  Google Scholar 

  18. M. J. Holland, K.-A. Suominen, and K. Burnett, Phys. Rev. Lett. 72, 2367 (1994).

    Article  ADS  Google Scholar 

  19. Y. Castin and K. Mølmer, Phys. Rev. Lett. 74, 3772 (1995).

    Article  ADS  Google Scholar 

  20. J. Piilo, K.-A. Suominen, and K. Berg-Sørensen, Phys. Rev. A 65, 033411 (2002).

    Article  ADS  Google Scholar 

  21. B. M. Garraway and P. L. Knight, Phys. Rev. A 54, 3592 (1996).

    Article  ADS  Google Scholar 

  22. J. Gambetta and H. M. Wiseman, Phys. Rev. A 68, 062104 (2003).

    Article  MathSciNet  ADS  Google Scholar 

  23. W. T. Strunz, L. Diòsi, and N. Gisin, Phys. Rev. Lett. 82, 1801 (1999).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. L. Mazzola, S. Maniscalco, J. Piilo, K.-A. Suominen, and B. M. Garraway, arXiv 0810.1361 (2008).

  25. S. Stenholm and K.-A. Suominen, Quantum Approach to Informatics (Wiley, New York, 2005).

    Book  MATH  Google Scholar 

  26. E. L. Wolf, Nanophysics and Nanotechnology, 2nd ed., (Wiley-VCH, Berlin, 2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piilo, J., Maniscalco, S., Härkönen, K. et al. Non-Markovian dynamics and quantum jumps. Opt. Spectrosc. 108, 407–411 (2010). https://doi.org/10.1134/S0030400X10030148

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X10030148

Keywords

Navigation