Skip to main content
Log in

Cytotoxicity Studies of 5-Arylaminouracil Derivatives

  • STRUCTURAL-FUNCTIONAL ANALYSIS OF BIOPOLYMERS AND THEIR COMPLEXES
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

We have previously shown that 5-arylaminouracil derivatives can inhibit HIV-1, herpesviruses, mycobacteria, and other pathogens through various mechanisms. The purpose of this study was to evaluate the potential of 5-arylaminouracils and their derivatives against leukemia, neuroblastoma, and glial brain tumors. 5-Aminouracils with various substituents and their 5'-norcabocyclic and ribo derivatives were screened for cytotoxicity against two neuroblastoma cell lines (SH-SY5Y and IMR-32), K-562 lymphoblastic cells, HL-60 promyeoloblastic cells, and low-passage variants of well-differentiated glioblastoma multiforme (GBM5522 and GBM6138). Cytotoxicity assessment by the standard MTT test showed that most of the compounds lack significant toxicity towards the above cells. However, 5-(4-isopropylphenylamine)uracil and 5‑(4-tert-butylphenylamine)uracil exhibited a dose-dependent toxic effect towards the GBM6138 cell line with half-maximal inhibitory concentrations (IC50) of 9 and 2.3 μM, respectively. Antitumor activity was for the first time demonstrated for compounds of this type and can serve as a starting point for further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Kantarjian H., Kadia T., DiNardo C., Daver N., Borthakur G., Jabbour E., Garcia-Manero G., Konopleva M., Ravandi F. 2021. Acute myeloid leukemia: Current progress and future directions. Blood Cancer J. 11, 41. https://doi.org/10.1038/s41408-021-00425-3

    Article  PubMed  PubMed Central  Google Scholar 

  2. Matthay K.K., Maris J.M., Schleiermacher G., Nakagawara A., Mackall C.L., Diller L., Weiss W.A. 2016. Neuroblastoma. Nat. Rev. Dis. Primers. 2, 16078. https://doi.org/10.1038/nrdp.2016.78

    Article  PubMed  Google Scholar 

  3. Koshy M., Villano J.L., Dolecek T.A., Howard A., Mahmood U., Chmura S.J., Weichselbaum R.R., M-cCarthy B.J. 2012. Improved survival time trends for glioblastoma using the SEER 17 population-based registries. J. Neurooncol. 107, 207–212. https://doi.org/10.1007/s11060-011-0738-7

    Article  PubMed  Google Scholar 

  4. Stupp R., Mason W.P., van den Bent M.J., Weller M., Fisher B., Taphoorn M.J., Belanger K., Brandes A.A., Marosi C., Bogdahn U., Curschmann J., Janzer R.C., Ludwin S.K., Gorlia T., Allgeier A., Lacombe D., Cairncross J.G., Eisenhauer E., Mirimanoff R.O., European Organisation for R., Treatment of Cancer Brain T., Radiotherapy G., National Cancer Institute of Canada Clinical Trials G. 2005. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352, 987–996. https://doi.org/10.1056/NEJMoa043330

    Article  CAS  PubMed  Google Scholar 

  5. Tan A.C., Ashley D.M., Lopez G.Y., Malinzak M., Friedman H.S., Khasraw M. 2020. Management of glioblastoma: State of the art and future directions. CA Cancer J. Clin. 70, 299–312. https://doi.org/10.3322/caac.21613

    Article  PubMed  Google Scholar 

  6. Vijayaraghavalu S., Dermawan J.K., Cheriyath V., Labhasetwar V. 2013. Highly synergistic effect of sequential treatment with epigenetic and anticancer drugs to overcome drug resistance in breast cancer cells is mediated via activation of p21 gene expression leading to G2/M cycle arrest. Mol. Pharm. 10, 337–352. https://doi.org/10.1021/mp3004622

    Article  CAS  PubMed  Google Scholar 

  7. Housman G., Byler S., Heerboth S., Lapinska K., Longacre M., Snyder N., Sarkar S. 2014. Drug resistance in cancer: an overview. Cancers (Basel). 6, 1769–1792. https://doi.org/10.3390/cancers6031769

    Article  PubMed  PubMed Central  Google Scholar 

  8. Qiu T., Zhou L., Zhu W., Wang T., Wang J., Shu Y., Liu P. 2013. Effects of treatment with histone deacetylase inhibitors in solid tumors: A review based on 30 clinical trials. Future Oncol. 9, 255–269. https://doi.org/10.2217/fon.12.173

    Article  CAS  PubMed  Google Scholar 

  9. Tyner J.W., Tognon C.E., Bottomly D., Wilmot B., Kurtz S.E., Savage S.L., Long N., Schultz A.R., Traer E., Abel M., Agarwal A., Blucher A., Borate U., Bryant J., Burke R., Carlos A., Carpenter R., Carroll J., Chang B.H., Coblentz C., d’Almeida A., Cook R., Danilov A., Dao K.T., Degnin M., Devine D., Dibb J., Edwards D.K.t., Eide C.A., English I., Glover J., Henson R., Ho H., Jemal A., Johnson K., Johnson R., Junio B., Kaempf A., Leonard J., Lin C., Liu S.Q., Lo P., Loriaux M.M., Luty S., Macey T., MacManiman J., Martinez J., Mori M., Nelson D., Nichols C., Peters J., Ramsdill J., Rofelty A., Schuff R., Searles R., Segerdell E., Smith R.L., Spurgeon S.E., Sweeney T., Thapa A., Visser C., Wagner J., Watanabe-Smith K., Werth K., Wolf J., White L., Yates A., Zhang H., Cogle C.R., Collins R.H., Connolly D.C., Deininger M.W., Drusbosky L., Hourigan C.S., Jordan C.T., Kropf P., Lin T.L., Martinez M.E., Medeiros B.C., Pallapati R.R., Pollyea D.A., Swords R.T., Watts J.M., Weir S.J., Wiest D.L., Winters R.M., McWeeney S.K., Druker B.J. 2018. Functional genomic landscape of acute myeloid leukaemia. Nature. 562, 526–531. https://doi.org/10.1038/s41586-018-0623-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Patel J.P., Gonen M., Figueroa M.E., Fernandez H., Sun Z., Racevskis J., Van Vlierberghe P., Dolgalev I., Thomas S., Aminova O., Huberman K., Cheng J., Viale A., Socci N.D., Heguy A., Cherry A., Vance G., Higgins R.R., Ketterling R.P., Gallagher R.E., Litzow M., van den Brink M.R., Lazarus H.M., Rowe J.M., Luger S., Ferrando A., Paietta E., Tallman M.S., Melnick A., Abdel-Wahab O., Levine R.L. 2012. Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N. Engl. J. Med. 366, 1079–1089. https://doi.org/10.1056/NEJMoa1112304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Papaemmanuil E., Gerstung M., Bullinger L., Gaidzik V.I., Paschka P., Roberts N.D., Potter N.E., Heuser M., Thol F., Bolli N., Gundem G., Van Loo P., Martincorena I., Ganly P., Mudie L., McLaren S., O’Meara S., Raine K., Jones D.R., Teague J.W., Butler A.P., Greaves M.F., Ganser A., Dohner K., Schlenk R.F., Dohner H., Campbell P.J. 2016. Genomic classification and prognosis in acute myeloid leukemia. N. Engl. J. Med. 374, 2209–2221. https://doi.org/10.1056/NEJMoa1516192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cancer Genome Atlas Research N., Ley T.J., Miller C., Ding L., Raphael B.J., Mungall A.J., Robertson A., Hoadley K., Triche T.J., Jr., Laird P.W., Baty J.D., Fulton L.L., Fulton R., Heath S.E., Kalicki-Veizer J., Kandoth C., Klco J.M., Koboldt D.C., Kanchi K.L., Kulkarni S., Lamprecht T.L., Larson D.E., Lin L., Lu C., McLellan M.D., McMichael J.F., Payton J., Schmidt H., Spencer D.H., Tomasson M.H., Wallis J.W., Wartman L.D., Watson M.A., Welch J., Wendl M.C., Ally A., Balasundaram M., Birol I., Butterfield Y., Chiu R., Chu A., Chuah E., Chun H.J., Corbett R., Dhalla N., Guin R., He A., Hirst C., Hirst M., Holt R.A., Jones S., Karsan A., Lee D., Li H.I., Marra M.A., Mayo M., Moore R.A., Mungall K., Parker J., Pleasance E., Plettner P., Schein J., Stoll D., Swanson L., Tam A., Thiessen N., Varhol R., Wye N., Zhao Y., Gabriel S., Getz G., Sougnez C., Zou L., Leiserson M.D., Vandin F., Wu H.T., Applebaum F., Baylin S.B., Akbani R., Broom B.M., Chen K., Motter T.C., Nguyen K., Weinstein J.N., Zhang N., Ferguson M.L., Adams C., Black A., Bowen J., Gastier-Foster J., Grossman T., Lichtenberg T., Wise L., Davidsen T., Demchok J.A., Shaw K.R., Sheth M., Sofia H.J., Yang L., Downing J.R., Eley G. 2013. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N. Engl. J. Med. 368, 2059–2074. https://doi.org/10.1056/NEJMoa1301689

    Article  CAS  Google Scholar 

  13. Christman J.K. 2002. 5-Azacytidine and 5-aza-2'-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene. 21, 5483–5495. https://doi.org/10.1038/sj.onc.1205699

    Article  CAS  PubMed  Google Scholar 

  14. Estey E.H. 2013. Epigenetics in clinical practice: the examples of azacitidine and decitabine in myelodysplasia and acute myeloid leukemia. Leukemia. 27, 1803–1812. https://doi.org/10.1038/leu.2013.173

    Article  CAS  PubMed  Google Scholar 

  15. Bartolucci S., Estenoz M., Longo A., Santoro B., Momparler R.L., Rossi M., Augusti-Tocco G. 1989. 5‑Aza-2'-deoxycytidine as inducer of differentiation and growth inhibition in mouse neuroblastoma cells. Cell Differ Dev. 27, 47–55. https://doi.org/10.1016/0922-3371(89)90043-9

    Article  CAS  PubMed  Google Scholar 

  16. Carpinelli P., Granata F., Augusti-Tocco G., Rossi M., Bartolucci S. 1993. Antiproliferative effects and DNA hypomethylation by 5-aza-2'-deoxycytidine in human neuroblastoma cell lines. Anticancer Drugs. 4, 629–635. https://doi.org/10.1097/00001813-199312000-00004

    Article  CAS  PubMed  Google Scholar 

  17. Charlet J., Schnekenburger M., Brown K.W., Diederich M. 2012. DNA demethylation increases sensitivity of neuroblastoma cells to chemotherapeutic drugs. Biochem. Pharmacol. 83, 858–865. https://doi.org/10.1016/j.bcp.2012.01.009

    Article  CAS  PubMed  Google Scholar 

  18. Lipatova A.V., Soboleva A.V., Gorshkov V.A., Bubis J.A., Solovyeva E.M., Krasnov G.S., Kochetkov D.V., Vorobyev P.O., Ilina I.Y., Moshkovskii S.A., Kjeldsen F., Gorshkov M.V., Chumakov P.M., Tarasova I.A. 2021. Multi-omics analysis of glioblastoma cells’ sensitivity to oncolytic viruses. Cancers (Basel). 13 (21), 5268. https://doi.org/10.3390/cancers13215268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Khandazhinskaya A.L., Alexandrova L.A., Matyugina E.S., Solyev P.N., Efremenkova O.V., Buckheit K.W., Wilkinson M., Buckheit R.W., Jr., Chernousova L.N., Smirnova T.G., Andreevskaya S.N., Leonova O.G., Popenko V.I., Kochetkov S.N., Seley-Radtke K.L. 2018. Novel 5'-norcarbocyclic pyrimidine derivatives as antibacterial agents. Molecules. 23 (12), 3069. https://doi.org/10.3390/molecules23123069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kezin V.A., Matyugina E.S., Novikov M.S., Chizhov A.O., Snoeck R., Andrei G., Kochetkov S.N., Khandazhinskaya A.L. 2022. New derivatives of 5-substituted uracils: Potential agents with a wide spectrum of biological activity. Molecules. 27 (9), 2866. https://doi.org/10.3390/molecules27092866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Carbon J., David H., Studier M.H. 1968. Thiobases in Escherchia coli transfer RNA: 2-Thiocytosine and 5-methylaminomethyl-2-thiouracil. Science. 161, 1146–1147. https://doi.org/10.1126/science.161.3846.1146

    Article  CAS  PubMed  Google Scholar 

  22. Orr G.F., Musso D.L., Boswell G.E., Kelley J.L., Joyner S.S., Davis S.T., Baccanari D.P. 1995. Inhibition of uridine phosphorylase: Synthesis and structure-activity relationships of aryl-substituted 5-benzyluracils and 1-[(2-hydroxyethoxy)methyl]-5-benzyluracils. J. Med. Chem. 38, 3850–3856. https://doi.org/10.1021/jm00019a015

    Article  CAS  PubMed  Google Scholar 

  23. el Kouni M.H., el Kouni M.M., Naguib F.N. 1993. Differences in activities and substrate specificity of human and murine pyrimidine nucleoside phosphorylases: implications for chemotherapy with 5-fluoropyrimidines. Cancer Res. 53, 3687–3693.

    CAS  PubMed  Google Scholar 

  24. Roth B., Aig E., Lane K., Rauckman B.S. 1980. 2,4-Diamino-5-benzylpyrimidines as antibacterial agents. 4. 6-Substituted trimethoprim derivatives from phenolic Mannich intermediates. Application to the synthesis of trimethoprim and 3,5-dialkylbenzyl analogues. J. Med. Chem. 23, 535–541. https://doi.org/10.1021/jm00179a012

    Article  CAS  PubMed  Google Scholar 

  25. Orr G.F., Musso D.L., Kelley J.L., Joyner S.S., Davis S.T., Baccanari D.P. 1997. Inhibition of uridine phosphorylase. Synthesis and structure-activity rela-tionships of aryl-substituted 1-((2-hydroxyetho-xy)methyl)-5-(3-phenoxybenzyl)uracil. J. Med. Chem. 40, 1179–1185. https://doi.org/10.1021/jm960688j

    Article  CAS  PubMed  Google Scholar 

  26. Chowdhury S.F., Villamor V.B., Guerrero R.H., Leal I., Brun R., Croft S.L., Goodman J.M., Maes L., Ruiz Perez L.M., Pacanowska D.G., Gilbert I.H. 1999. Design, synthesis, and evaluation of inhibitors of try-panosomal and leishmanial dihydrofolate reductase. J. Med. Chem. 42, 4300–4312. https://doi.org/10.1021/jm981130+

    Article  CAS  PubMed  Google Scholar 

  27. Nencka R., Votruba I., Hrebabecky H., Jansa P., Tloust’ova E., Horska K., Masojidkova M., Holy A. 2007. Discovery of 5-substituted-6-chlorouracils as efficient inhibitors of human thymidine phosphorylase. J. Med. Chem. 50, 6016–6023. https://doi.org/10.1021/jm070644i

    Article  CAS  PubMed  Google Scholar 

  28. Novikov M.S., Buckheit R.W., Jr., Temburnikar K., Khandazhinskaya A.L., Ivanov A.V., Seley-Radtke K.L. 2010. 1-Benzyl derivatives of 5-(arylamino)uracils as anti-HIV-1 and anti-EBV agents. Bioorg. Med. Chem. 18, 8310–8314. https://doi.org/10.1016/j.bmc.2010.09.070

    Article  CAS  PubMed  Google Scholar 

  29. Maslova A.A., Matyugina E.S., Snoeck R., Andrei G., Kochetkov S.N., Khandazhinskaya A.L., Novikov M.S. 2020. Uracil-containing heterodimers of a new type: Synthesis and study of their anti-viral properties. Molecules. 25 (15), 3350. https://doi.org/10.3390/molecules25153350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Matyugina E., Novikov M., Babkov D., Ozerov A., Chernousova L., Andreevskaya S., Smirnova T., Karpenko I., Chizhov A., Murthu P., Lutz S., Kochetkov S., Seley-Radtke K.L., Khandazhinskaya A.L. 2015. 5-Arylaminouracil derivatives: New inhibitors of Mycobacterium tuberculosis. Chem. Biol. Drug. Des. 86, 1387–1396. https://doi.org/10.1111/cbdd.12603

    Article  CAS  PubMed  Google Scholar 

  31. Vorbruggen H., Krolikiewicz K., Niedballa U. 1975. Synthesis of nucleosides with use of trimethylsilyl-heterocycles. Ann. N.Y. Acad. Sci. 255, 8–90. https://doi.org/10.1111/j.1749-6632.1975.tb29215.x

    Article  Google Scholar 

  32. Vorbrüggen H., Ruh-Pohlenz C. 2001. Handbook of Nucleoside Synthesis. New York: Wiley.

    Google Scholar 

  33. Lopez-Suarez L., Awabdh S.A., Coumoul X., Chauvet C. 2022. The SH-SY5Y human neuroblastoma cell line, a relevant in vitro cell model for investigating neurotoxicology in human: Focus on organic pollutants. Neurotoxicology. 92, 131–155. https://doi.org/10.1016/j.neuro.2022.07.008

    Article  CAS  PubMed  Google Scholar 

  34. Kovalevich J., Santerre M., Langford D. 2021. Considerations for the use of SH-SY5Y neuroblastoma cells in neurobiology. Methods Mol. Biol. 2311, 9–23. https://doi.org/10.1007/978-1-0716-1437-2_2

    Article  CAS  PubMed  Google Scholar 

  35. Cheung Y.T., Lau W.K., Yu M.S., Lai C.S., Yeung S.C., So K.F., Chang R.C. 2009. Effects of all-trans-retinoic acid on human SH-SY5Y neuroblastoma as in vitro model in neurotoxicity research. Neurotoxicology. 30, 127–135. https://doi.org/10.1016/j.neuro.2008.11.001

    Article  CAS  PubMed  Google Scholar 

  36. Amrati F.E., Chebaibi M., Galvao de Azevedo R., Conte R., Slighoua M., Mssillou I., Kiokias S., de Freitas Gomes A., Soares Pontes G., Bousta D. 2023. Phenolic composition, wound healing, antinociceptive, and anticancer effects of Caralluma europaea extracts. Molecules. 28 (4), 1780. https://doi.org/10.3390/molecules28041780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Monga M., Sausville E.A. 2002. Developmental therapeutics program at the NCI: Molecular target and drug discovery process. Leukemia. 16, 520–526. https://doi.org/10.1038/sj.leu.2402464

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project nos. 19-74-10048, https://rscf.ru/project/19-74-10048/, synthesis of 5-arylamino uridine derivatives and 23-64-10018, https://rscf.ru/project/23-64-10018/, cytotoxicity testing).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Khandazhinskaya.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by T. Tkacheva

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kezin, V.A., Matyugina, E.S., Surzhikov, S.A. et al. Cytotoxicity Studies of 5-Arylaminouracil Derivatives. Mol Biol 58, 328–335 (2024). https://doi.org/10.1134/S0026893324020079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893324020079

Keywords:

Navigation