Skip to main content
Log in

Inactivation of Ras1 in Fission Yeast Aggravates the Oxidative Stress Response Induced by Tert Butyl Hydroperoxide (tBHP)

  • MOLECULAR BIOLOGY OF THE CELL
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Ras proteins are small GTPases and function as molecular switches to regulate cellular homeostasis. Ras-dependent signalling pathways regulate several essential processes such as cell cycle progression, growth, migration, apoptosis, and senescence. The dysregulation of Ras signaling pathway has been linked to several pathological outcomes. A potential role of RAS in regulating the redox signalling pathway has been established that includes the manipulation of ROS levels to provide a redox milieu that might be conducive to carcinogenesis. Reactive oxygen species (ROS) and mitochondrial impairment have been proposed as major factors affecting the physiology of cells and implicated in several pathologies. The present study was conducted to evaluate the role of Ras1, tert Butyl hydroperoxide (tBHP), and antimycin A in oxidative stress response in Schizosaccharomyces pombe cells. We observed decreased cell survival, higher levels of ROS, and mitochondrial dysfunctionality in ras1Δ cells and tBHP as well as respiratory inhibitor, antimycin A treated wild type cells. Furthermore, these defects were more profound in ras1Δ cells treated with tBHP or antimycin A. Additionally, Ras1 also has been shown to regulate the expression and activity of several antioxidant enzymes like glutathione peroxidase (GSH-Px), glutathione-S-transferase (GST), and catalase. Together, these results suggest the potential role of S. pombe Ras1 in mitigating oxidative stress response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFRENCES

  1. Sbodio J.I., Snyder S.H., Paul B.D. 2019. Redox mechanism in neurodegeneration: from disease outcome to therapeutic opportunities. Antioxid. Redox Signal. 30, 1450–1499.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Simanshu D.K., Nissley D.V., McCormick F. 2017. RAS proteins and their regulators in human disease. Cell. 170 (1), 17–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Vojtek A.B., Der C.J. 1998. Increasing complexity of the Ras signaling pathway. J. Biol. Chem. 273, 19925–19928.

    Article  CAS  PubMed  Google Scholar 

  4. Klandorf H., Dyke Van K. 2012. Oxidative and nitrosative stresses: their role in health and disease in man and birds. In Oxidative Stress—Molecular Mechanisms and Biological Effects. Lushchak V., Semchyshyn H.M., Eds. IntechOpen, 47–60. https://doi.org/10.5772/33879

  5. Carew J.S., Zhou Y., Huang P. 2006. Oxidative stress, cell proliferation, and apoptosis. In Oxidative Stress, Disease and Cancer. Singh K.K., Ed. London: Imperial College Press, 309–331. https://doi.org/10.1142/9781860948046_0009

  6. Marozkina N.V., Gaston B. 2012. S-Nitrosylation signaling regulates cellular protein interactions. Biochim Biophys Acta. 1820, 722–729.

    Article  CAS  PubMed  Google Scholar 

  7. Malumbres M., Barbacid M. 2003. RAS oncogenes: the first 30 years. Nat. Rev. Cancer. 3, 459–465.

    Article  CAS  PubMed  Google Scholar 

  8. Garcia P., Tajadura V., Garcia I., Sanchez Y. 2006. Role of Rho GTPases and Rho GEFs in the regulation of cell shape and integrity in fission yeast. Yeast. 23, 1031–1043.

    Article  CAS  PubMed  Google Scholar 

  9. Young E., Zheng Z.Y., Wilkins A.D., Jeong H.T., Li M., Lichtarge O., Chang E.C. 2014. Regulation of Ras localization and cell transformation by evolutionarily conserved palmitoyltransferases. Mol. Cell. Biol. 34, 374–385.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kim H.J., Jung H.Y., Lim C.J. 2008. The pap1+ gene of fission yeast is transcriptionally regulated by nitrosative and nutritional stress. FEMS Microbiol. Lett. 280, 176–181.

    Article  CAS  PubMed  Google Scholar 

  11. Bond M., Croft W., Tyson R., Bretschneider T., Davey J., Ladds G. 2013. Quantitative analysis of human ras localization and function in the fission yeast Schizosaccharomyces pombe. Yeast. 30, 145–156.

    Article  CAS  PubMed  Google Scholar 

  12. Weston C., Bond M., Croft W., Ladds G. 2013. The coordination of cell growth during fission yeast mating requires Ras1-GTP hydrolysis. PLoS One. 8 (10), e77487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sánchez N.S., Königsberg M. 2006. Using yeast to easily determine mitochondrial functionality with 1-(4,5-dimethylthiazol-2-yl)-3,5-diphenyltetrazolium bromide (MTT) assay. Biochem. Mol. Biol. Educ. 34 (3), 209–212.

    Article  PubMed  Google Scholar 

  14. Warholm M., Guthenberg C., von Bahr C., Mannervik B. 1985. Glutathione transferases from human liver. Methods Enzymol. 113, 499–504.

    Article  CAS  PubMed  Google Scholar 

  15. Wendel A. 1981. Glutathione peroxidase. Methods Enzymol. 77, 325–333.

    Article  CAS  PubMed  Google Scholar 

  16. Roggenkamp R., Sahm H., Wagner F. 1974. Microbial assimilation of methanol induction and function of catalase in Candida boidinii. FEBS Lett. 41 (2), 283–286.

    Article  CAS  PubMed  Google Scholar 

  17. Vlamis-Gardikas A., Åslund F., Spyrou G., Bergman T., Holmgren A. 1997. Cloning, overexpression, and characterization of glutaredoxin 2, an atypical glutaredoxin from Escherichia coli. J. Biol. Chem. 272 (17), 11236–11243.

    Article  CAS  PubMed  Google Scholar 

  18. Sonkar A., Yadav S., Ahmed S. 2016. Cleavage and polyadenylation factor, Rna14 is an essential protein required for the maintenance of genomic integrity in fission yeast Schizosaccharomyces pombe. Biochim. Biophys. Acta. 1863 (2), 189–197.

  19. Amoroso S., D’Alessio A., Sirabella R., Di Renzo G., Annunziato L. 2002. Ca(2+) independent caspase-3 but not Ca2+-dependent caspase-2 activation induced by oxidative stress leads to SH-SY5Y human neuroblastoma cell apoptosis. J. Neurosci. Res. 68, 454–462.

    Article  CAS  PubMed  Google Scholar 

  20. Kanupriya A., Prasad D., Sai Ram M., Sawhney R.C., Ilavazhagan G., Banerjee P.K. 2007. Mechanism of tert-butylhydroperoxide induced cytotoxicity in U-937 macrophages by alteration of mitochondrial function and generation of ROS. Toxicol. In Vitro. 21 (5), 846–854.

    Article  CAS  PubMed  Google Scholar 

  21. Lv H., Zhen C., Liu J., Yang P., Hu L., Shang P. 2019. Unraveling the potential role of glutathione in multiple forms of cell death in cancer therapy. Oxid. Med. Cell. Longev. 2019, 3150145.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Auten R.L., Davis J.M. 2009. Oxygen toxicity and reactive oxygen species: the devil is in the details. Pediatric. Res. 66 (2), 121–127.

    Article  CAS  Google Scholar 

  23. Guo C., Sun L., Chen X., Zhang D. 2013. Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural. Regen. Res. 8 (21), 2003.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Bhatti J.S., Bhatti G.K., Reddy P.H. 2017. Mitochondrial dysfunction and oxidative stress in metabolic disorders—A step towards mitochondria based therapeutic strategies. Biochim. Biophys. Acta. Mol. Basis Dis. 1863 (5), 1066–1077.

  25. Veal E.A., Toone W.M., Jones N., Morgan B.A. 2002. Distinct roles for glutathione S-transferases in the oxidative stress response in Schizosaccharomyces pombe. J. Biol. Chem. 277, 35523–35531.

    Article  CAS  PubMed  Google Scholar 

  26. Aniya Y., Daido A. 1994. Activation of microsomal glutathione S-transferase in tert-butyl hydroperoxide-induced oxidative stress of isolated rat liver. Jpn. J. Pharmacol. 66 (1), 123–130.

    Article  CAS  PubMed  Google Scholar 

  27. Takebe G., Yarimizu J., Saito Y., Hayashi T., Nakamura H., Yodoi J., Nagasawa S., Takahashi K. 2002. A comparative study on the hydroperoxide and thiol specificity of the glutathione peroxidase family and selenoprotein P. J. Biol. Chem. 277 (43), 41254–41258.

    Article  CAS  PubMed  Google Scholar 

  28. Inoue Y., Matsuda T., Sugiyama K.I., Izawa S., Kimura A. 1999. Genetic analysis of glutathione peroxidase in oxidative stress response of Saccharomyces cerevisiae. J. Biol. Chem. 274 (38), 27002–27009.

    Article  CAS  PubMed  Google Scholar 

  29. Sandström B.E., Marklund S.L. 1990. Effects of variation in glutathione peroxidase activity on DNA damage and cell survival in human cells exposed to hydrogen peroxide and t-butyl hydroperoxide. Biochem J. 271 (1), 17–23.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Jamieson D.J. 1998. Oxidative stress responses of the yeast Saccharomyces cerevisiae. Yeast. 14 (16), 1511–1527.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang J., Wang X., Vikash V., Ye Q., Wu D., Liu Y., Dong W. 2016. ROS and ROS-mediated cellular signaling. Oxid. Med. Cell. Longev. 2016, 4350965. https://doi.org/10.1155/2016/4350965

  32. Cox A. D., Der C. J. 2003. The dark side of Ras: regulation of apoptosis. Oncogene. 22, 8999–9006.

    Article  CAS  PubMed  Google Scholar 

  33. Shaulian E., Karin M. 2001. AP-1 in cell proliferation and survival. Oncogene. 20, 2390–2400.

    Article  CAS  PubMed  Google Scholar 

  34. Weinberg F., Hamanaka R., Wheaton W.W., Weinberg S., Joseph J., Lopez M., Kalyanaraman B., Mutlu G.M., Budinger G.S., Chandel N.S. 2010. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc. Natl. Acad. Sci. U. S. A. 107 (19), 8788–8793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Toone W.M., Kuge S., Samuels M., Morgan B.A., Toda T., Jones N. 1998. Regulation of the fission yeast transcription factor Pap1 by oxidative stress: requirement for the nuclear export factor Crm1 (Exportin) and the stress-activated MAP kinase Sty1/Spc1. Genes Dev. 12 (10), 1453–1463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lim J.K., Delaidelli A., Minaker S.W., Zhang H.F., Colovic M., Yang H., Negri G.L., von Karstedt S., Lockwood W.W., Schaffer P., Leprivier G. 2019. Cystine/glutamate antiporter xCT (SLC7A11) facilitates oncogenic RAS transformation by preserving intracellular redox balance. Proc. Natl. Acad. Sci. U. S. A. 116, 9433–9442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Padanad M.S., Konstantinidou G., Venkateswaran N., Melegari M., Rindhe S., Mitsche M., Yang C., Batten K., Huffman K.E., Liu J., Tang X. 2016. Fatty acid oxidation mediated by Acyl-CoA synthetase long chain 3 is required for mutant KRAS lung tumorigenesis. Cell Rep. 16, 1614–1628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Carracedo A., Cantley L.C., Pandolfi P.P. 2013. Cancer metabolism: fatty acid oxidation in the limelight. Nat. Rev. Cancer. 13, 227–232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by grants from the Science and Engineering Research Board (SERB), India (PDF/2016/001797) and Council of Scientific and Industrial Research New Delhi, India. Simmi Anjum acknowledges University Grant Commission (UGC), India for providing the research fellowship. The CDRI manuscript number for this manuscript is 10521.

Author information

Authors and Affiliations

Authors

Contributions

N. Masood conceived the study protocol; N. Masood and S. Anjum performed the experiment; S. Anjum assisted to prepare the manuscript; S. Ahmed supervised the study and wrote the manuscript.

Corresponding author

Correspondence to S. Ahmed.

Ethics declarations

ADDITIONAL INFORMATION

The text was submitted by the author(s) in English.

COMPLIANCE WITH ETHICAL STANDARDS

The authors declare that they have no conflicts of interest with the contents of this article. This article does not contain any studies with animal or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masood, N., Anjum, S. & Ahmed, S. Inactivation of Ras1 in Fission Yeast Aggravates the Oxidative Stress Response Induced by Tert Butyl Hydroperoxide (tBHP). Mol Biol 57, 692–699 (2023). https://doi.org/10.1134/S002689332304012X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002689332304012X

Keywords:

Navigation