Skip to main content
Log in

Methylation of Regulatory Regions of DNA Repair Genes in Carotid Atherosclerosis

  • GENOMICS. TRANSCRIPTOMICS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

The status of DNA methylation in the human genome changes during the pathogenesis of common diseases and acts as a predictor of life expectancy. Therefore, it is of interest to investigate the methylation level of regulatory regions of genes responsible for general biological processes that are potentially significant for the development of age-associated diseases. Among them there are genes encoding proteins of DNA repair system, which are characterized by pleiotropic effects. Here, results of the targeted methylation analysis of two regions of the human genome (the promoter of the MLH1 gene and the enhancer near the ATM gene) in different tissues of patients with carotid atherosclerosis are present. Analysis of the methylation profiles of studied genes in various tissues of the same individuals demonstrated marked differences between leukocytes and tissues of the vascular wall. Differences in methylation levels between normal and atherosclerotic tissues of the carotid arteries were revealed only for two studied CpG sites (chr11:108089866 and chr11:108090020, GRCh37/hg19 assembly) in the ATM gene. Based on this, we can assume the involvement of ATM in the development of atherosclerosis. “Overload” of the studied regions with transcription factor binding sites (according to ReMapp2022 data) indicate that the tissue-specific nature of methylation of the regulatory regions of the MLH1 and ATM may be associated with expression levels of these genes in a particular tissue. It has been shown that inter-individual differences in the methylation levels of CpG sites are associated with sufficiently distant nucleotide substitutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Feinberg A.P. 2008. Epigenetics at the epicenter of modern medicine. JAMA. 299, 1345–1350. https://doi.org/10.1001/jama.299.11.1345

    Article  CAS  PubMed  Google Scholar 

  2. Paul D.S., Beck S. 2014. Advances in epigenome-wide association studies for common diseases. Trends Mol. Med. 20 (10), 541–543. https://doi.org/10.1016/j.molmed.2014.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Neidhart M. 2015. DNA Methylation and Complex Human Disease. Elsevier. https://doi.org/10.1016/C2013-0-13028-0

  4. Kucher A.N., Nazarenko M.S., Markov A.V., Koroleva I.A., Barbarash O.L. 2017. Variability of methylation profiles of CpG-sites in microRNA genes in leukocytes and vascular tissues of patients with atherosclerosis. Biochemistry (Moscow). 82 (6), 698–706. https://doi.org/10.1134/S0006297917060062

    Article  CAS  PubMed  Google Scholar 

  5. Levy M.A., McConkey H., Kerkhof J., Barat-Houari M., Bargiacchi S., Biamino E., Bralo M.P., Cappuccio G., Ciolfi A., Clarke A., DuPont B.R., Elting M.W., Faivre L., Fee T., Fletcher R.S., Cherik F., Foroutan A., Friez M.J., Gervasini C., Haghshenas S., Hilton B.A., Jenkins Z., Kaur S., Lewis S., Louie R.J., Maitz S., Milani D., Morgan A.T., Oegema R., Ostergaard E., Pallares N.R., Piccione M., Pizzi S., Plomp A.S., Poulton C., Reilly J., Relator R., Rius R., Robertson S., Rooney K., Rousseau J., Santen G.W.E., Santos-Simarro F., Schijns J., Squeo G.M., St John M., Thauvin-Robinet C., Traficante G., van der Sluijs P.J., Vergano S.A., Vos N., Walden K.K., Azmanov D., Balci T., Banka S., Gecz J., Henneman P., Lee J.A., Mannens M.M.A.M., Roscioli T., Siu V., Amor D.J., Baynam G., Bend E.G., Boycott K., Brunetti-Pierri N., Campeau P.M., Christodoulou J., Dyment D., Esber N., Fahrner J.A., Fleming M.D., Genevieve D., Kerrnohan K.D., McNeill A., Menke L.A., Merla G., Prontera P., Rockman-Greenberg C., Schwartz C., Skinner S.A., Stevenson R.E., Vitobello A., Tartaglia M., Alders M., Tedder M.L., Sadikovic B. 2021. Novel diagnostic DNA methylation episignatures expand and refine the epigenetic landscapes of Mendelian disorders. HGG Adv. 3 (1), 100075. https://doi.org/10.1016/j.xhgg.2021.100075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Salameh Y., Bejaoui Y., El Hajj N. 2020. DNA Methylation biomarkers in aging and age-related diseases. Front. Genet. 11, 171. https://doi.org/10.3389/fgene.2020.00171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yuen R.K., Robinson W.P. 2011. A high capacity of the human placenta for genetic and epigenetic variation: implications for assessing pregnancy outcome. Placenta. 32, S136–S141. https://doi.org/10.1016/j.placenta.2011.01.003

    Article  CAS  PubMed  Google Scholar 

  8. Aavik E., Babu M., Yla-Herttuala S. 2019. DNA methylation processes in atheosclerotic plaque. Atherosclerosis. 281, 168–179. https://doi.org/10.1016/j.atherosclerosis.2018.12.006

    Article  CAS  PubMed  Google Scholar 

  9. Nazarenko M.S., Markov A.V., Koroleva Yu.A., Sleptsov A.A., Kazantsev A.N., Barbarash O.L., Puzyrev V.P. 2017. Identification of differentially methylated genes potentially associated with atherosclerosis in humans. Ross. Kardiol. Zh. 22 (10), 42–48. https://doi.org/10.15829/1560-4071-2017-10-42-48

    Article  Google Scholar 

  10. Koroleva Yu.A., Markov A.V., Goncharova I.A., Sleptsov A.A., Babushkina N.P., Valiakhmetov N.R., Sharysh D.V., Zarubin A.A., Kuznetsov M.S., Kozlov B.N., Nazarenko M.S. 2020. Deoxyribonucleic acid methylation in the enhancer region of the CDKN2A/2B and CDKN2B-AS1 genes in vessels and blood cells in patients with carotid atherosclerosis. Ross. Kardiol. Zh. 25 (10), 32–40. https://doi.org/10.15829/1560-4071-2020-4060

    Article  Google Scholar 

  11. Babushkina N.P., Postrigan A.E., Kucher A.N. 2021. Involvement of variants in the genes encoding BRCA1-associated genome surveillance complex (BASC) in the development of human common diseases. Mol. Biol. (Moscow). 55 (2), 278–296. https://doi.org/10.1134/S0026893321020047

    Article  CAS  Google Scholar 

  12. Kar S.P., Quiros P.M., Gu M., Jiang T., Mitchell J., Langdon R., Iyer V., Barcena C., Vijayabaskar M.S., Fabre M.A., Carter P., Petrovski S., Burgess S., Vassiliou G.S. 2022. Genome-wide analyses of 200,453 individuals yield new insights into the causes and consequences of clonal hematopoiesis. Nat. Genet. 54 (8), 1155‒1166. https://doi.org/10.1038/s41588-022-01121-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sambrook J., Russel D.W. 2001. Molecular Cloning: A Laboratory Manual. New York: Cold Spring Harbor Lab. Press, 3rd ed.

    Google Scholar 

  14. Hoffman M.M., Ernst J., Wilder S.P., Kundaje A., Harris R.S., Libbrecht M., Giardine B., Ellenbogen P.M., Bilmes J.A., Birney E., Hardison R.C., Dunham I., Kellis M., Noble W.S. 2013. Integrative annotation of chromatin elements from ENCODE data. Nucleic Acids Res. 41 (2), 827–841. https://doi.org/10.1093/nar/gks1284

    Article  CAS  PubMed  Google Scholar 

  15. Fishilevich S., Nudel R., Rappaport N., Hadar R., Plaschkes I., Iny Stein T., Rosen N., Kohn A., Twik M., Safran M., Lancet D., Cohen D. 2017. GeneHancer: genome-wide integration of enhancers and target genes in GeneCards. Database (Oxford). 2017, bax028. https://doi.org/10.1093/database/bax028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Irizarry R.A., Ladd-Acosta C., Wen B., Wu Z., Montano C., Onyango P., Cui H., Gabo K., Rongione M., Webster M., Ji H., Potash J., Sabunciyan S., Feinberg A.P. 2009. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat. Genet. 41 (2), 178–186. https://doi.org/10.1038/ng.298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sandoval J., Heyn H., Moran S., Serra-Musach J., Pujana M.A., Bibikova M., Esteller M. 2011. Validation of a DNA methylation microarray for 450,000 CpG sites in the human genome. Epigenetics. 6 (6), 692–702. https://doi.org/10.4161/epi.6.6.16196

    Article  CAS  PubMed  Google Scholar 

  18. Masser D.R., Stanford D.R., Freeman W.M. 2015. Targeted DNA methylation analysis by next-generation sequencing. J. Vis. Exp. 96, 52488. https://doi.org/10.3791/52488

    Article  CAS  Google Scholar 

  19. Ewels P.A., Peltzer A., Fillinger S., Patel H., Alneberg J., Wilm A., Garcia M.U., Di Tommaso P., Nahnsen S. 2020. The nf-core framework for community-curated bioinformatics pipelines. Nat. Biotechnol. 38 (3), 276–278. https://doi.org/10.1038/s41587-020-0439-x

    Article  CAS  PubMed  Google Scholar 

  20. Pedersen B.S., Eyring K., De S., Yang I.V., Schwartz D.A. 2005. Fast and accurate alignment of long bisulfite-seq reads. arXiv. 1401.1129v2. https://arxiv.org/abs/1401.1129

  21. Krueger F., Andrews S.R. 2011. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics. 27 (11), 1571–1572. https://doi.org/10.1093/bioinformatics/btr167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Okonechnikov K., Conesa A., Garcia-Alcalde F. 2016. Qualimap 2: advanced multi-sample quality control for high-throughput sequencing data. Bioinformatics. 2 (2), 292–294. https://doi.org/10.1093/bioinformatics/btv566

    Article  CAS  Google Scholar 

  23. Daley T., Smith A.D. 2013. Predicting the molecular complexity of sequencing libraries. Nat. Methods. 10 (4), 325–327. https://doi.org/10.1038/nmeth.2375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ewels P., Magnusson M., Lundin S., Käller M. 2016. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics. 32 (19), 3047–3048. https://doi.org/10.1093/bioinformatics/btw354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Akalin A., Kormaksson M., Li S., Garrett-Bakelman F.E., Figueroa M.E., Melnick A., Mason C.E. 2012. methylKit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles. Genome Biol. 13 (10), R87. https://doi.org/10.1186/gb-2012-13-10-r87

    Article  PubMed  PubMed Central  Google Scholar 

  26. Guo W., Zhu P., Pellegrini M., Zhang M.Q., Wang X., Ni Z. 2018. CGmapTools improves the precision of heterozygous SNV calls and supports allele-specific methylation detection and visualization in bisulfite-sequencing data. Bioinformatics. 34 (3), 381–387. https://doi.org/10.1093/bioinformatics/btx595

    Article  CAS  PubMed  Google Scholar 

  27. Wang K., Li M., Hakonarson H. 2010. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38 (16), e164. https://doi.org/10.1093/nar/gkq603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. van der Maaten L.J.P., Hinton G.E. 2008. Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605.

    Google Scholar 

  29. Barrett J.C., Fry B., Maller J., Daly M.J. 2005. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 21 (2), 263–265. https://doi.org/10.1093/bioinformatics/bth457

    Article  CAS  PubMed  Google Scholar 

  30. Nettersheim F.S., Picard F.S.R., Hoyer F.F., Winkels H. 2022. Immunotherapeutic strategies in cancer and atherosclerosis-two sides of the same coin. Front. Cardiovasc. Med. 8, 812702. https://doi.org/10.3389/fcvm.2021.812702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fasehee H., Fakhraee M., Davoudi S., Vali H., Faghihi S. 2019. Cancer biomarkers in atherosclerotic plaque: evidenced from structural and proteomic analyses. Biochem. Biophys. Res. Commun. 509 (3), 687–693. https://doi.org/10.1016/j.bbrc.2018.12.160

    Article  CAS  PubMed  Google Scholar 

  32. Byrd P.J., Cooper P.R., Stankovic T., Kullar H.S., Watts G.D., Robinson P.J., Taylor M.R. 1996. A gene transcribed from the bidirectional ATM promoter coding for a serine rich protein: amino acid sequence, structure and expression studies. Hum. Mol. Genet. 5 (11), 1785–1791. https://doi.org/10.1093/hmg/5.11.1785

    Article  CAS  PubMed  Google Scholar 

  33. Medina R., van der Deen M., Miele-Chamberland A., Xie R.L., van Wijnen A.J., Stein J.L., Stein G.S. 2007. The HiNF-P/p220NPAT cell cycle signaling pathway controls nonhistone target genes. Cancer Res. 67 (21), 10334–10342. https://doi.org/10.1158/0008-5472.CAN-07-1560

    Article  CAS  PubMed  Google Scholar 

  34. Lesurf R., Cotto K.C., Wang G., Griffith M., Kasaian K., Jones S.J., Montgomery S.B., Griffith O.L.; Open Regulatory Annotation Consortium. 2016. ORegAnno 3.0: a community-driven resource for curated regulatory annotation. Nucleic Acids Res. 44 (D1), D126‒D132. https://doi.org/10.1093/nar/gkv1203

    Article  CAS  PubMed  Google Scholar 

  35. Floyd S.R., Pacold M.E., Huang Q., Clarke S.M., Lam F.C., Cannell I.G., Bryson B.D., Rameseder J., Lee M.J., Blake E.J., Fydrych A., Ho R., Greenberger B.A., Chen G.C., Maffa A., Del Rosario A.M., Root D.E., Carpenter A.E., Hahn W.C., Sabatini D.M., Chen C.C., White F.M., Bradner J.E., Yaffe M.B. 2013. The bromodomain protein Brd4 insulates chromatin from DNA damage signalling. Nature. 498 (7453), 246–250. https://doi.org/10.1038/nature12147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Muhar M., Ebert A., Neumann T., Umkehrer C., Jude J., Wieshofer C., Rescheneder P., Lipp J.J., Herzog V.A., Reichholf B., Cisneros D.A., Hoffmann T., Schlapansky M.F., Bhat P., von Haeseler A., Köcher T., Obenauf A.C., Popow J., Ameres S.L., Zuber J. 2018. SLAM-seq defines direct gene-regulatory functions of the BRD4-MYC axis. Science. 360 (6390), 800–805. https://doi.org/10.1126/science.aao2793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kumar R., Manning J., Spendlove H.E., Kremmidiotis G., McKirdy R., Lee J., Millband D.N., Cheney K.M., Stampfer M.R., Dwivedi P.P., Morris H.A., Callen D.F. 2006. ZNF652, a novel zinc finger protein, interacts with the putative breast tumor suppressor CBFA2T3 to repress transcription. Mol. Cancer Res. 4 (9), 655–665. https://doi.org/10.1158/1541-7786.MCR-05-0249

    Article  CAS  PubMed  Google Scholar 

  38. Pilarowski G.O., Vernon H.J., Applegate C.D., Boukas L., Cho M.T., Gurnett C.A., Benke P.J., Beaver E., Heeley J.M., Medne L., Krantz I.D., Azage M., Niyazov D., Henderson L.B., Wentzensen I.M., Baskin B., Sacoto M.J.G., Bowman G.D., Bjornsson HT. 2018. Missense variants in the chromatin remodeler CHD1 are associated with neurodevelopmental disability. J. Med. Genet. 55 (8), 561–566. https://doi.org/10.1136/jmedgenet-2017-104759

    Article  CAS  PubMed  Google Scholar 

  39. Hossain M.B., Vahter M., Concha G., Broberg K. 2012. Environmental arsenic exposure and DNA methylation of the tumor suppressor gene p16 and the DNA repair gene MLH1: effect of arsenic metabolism and genotype. Metallomics. 4 (11), 1167–1175. https://doi.org/10.1039/c2mt20120h

    Article  CAS  PubMed  Google Scholar 

  40. Ghosh M., Oner D., Poels K., Tabish A.M., Vlaanderen J., Pronk A., Kuijpers E., Lan Q., Vermeulen R., Bekaert B., Hoet P.H., Godderis L. 2017. Changes in DNA methylation induced by multi-walled carbon nanotube exposure in the workplace. Nanotoxicology. 11 (9–10), 1195–1210. https://doi.org/10.1080/17435390.2017.1406169

    Article  CAS  PubMed  Google Scholar 

  41. Sanchez H., Hossain M.B., Lera L., Hirsch S., Albala C., Uauy R., Broberg K., Ronco A.M. 2017. High levels of circulating folate concentrations are associated with DNA methylation of tumor suppressor and repair genes p16, MLH1, and MGMT in elderly Chileans. Clin. Epigenetics. 9, 74. https://doi.org/10.1186/s13148-017-0374-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Remely M., Ferk F., Sterneder Sюю, Setayesh T., Kepcija T., Roth S., Noorizadeh R., Greunz M., Rebhan I., Wagner K.H., Knasmüller S., Haslberger A. 2017. Vitamin E modifies high-fat diet-induced increase of DNA strand breaks, and changes in expression and DNA methylation of Dnmt1 and MLH1 in C57BL/6J male mice. Nutrients. 9 (6), 607. https://doi.org/10.3390/nu9060607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bhattacharjee P., Sanyal T., Bhattacharjee S., Bhattacharjee P. 2018. Epigenetic alteration of mismatch repair genes in the population chronically exposed to arsenic in West Bengal, India. Environ. Res. 163, 289–296. https://doi.org/10.1016/j.envres.2018.01.002

    Article  CAS  PubMed  Google Scholar 

  44. Zappe K., Pointner A., Switzeny O.J., Magnet U., Tomeva E., Heller J., Mare G., Wagner K.H., Knasmueller S., Haslberger A.G. 2018. Counteraction of oxidative stress by vitamin E affects epigenetic regulation by increasing global methylation and gene expression of MLH1 and DNMT1 dose dependently in Caco-2 cells. Oxid. Med. Cell Longev. 3734250. https://doi.org/10.1155/2018/3734250

  45. Mohammad G., Radhakrishnan R., Kowluru R.A. 2019. Epigenetic modifications compromise mitochondrial DNA quality control in the development of diabetic retinopathy. Invest. Ophthalmol. Vis. Sci. 60 (12), 3943–3951. https://doi.org/10.1167/iovs.19-27602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mulder R.H., Neumann A., Cecil C.A.M., Walton E., Houtepen L.C., Simpkin A.J., Rijlaarsdam J., Heijmans B.T., Gaunt T.R., Felix J.F., Jaddoe V.W.V., Bakermans-Kranenburg M.J., Tiemeier H., Relton C.L., van IJzendoorn M.H., Suderman M. 2021. Epigenome-wide change and variation in DNA methylation in childhood: trajectories from birth to late adolescence. Hum. Mol. Genet. 30 (1), 119–134. https://doi.org/10.1093/hmg/ddaa280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Feinberg A.P., Irizarry R.A. 2010. Evolution in health and medicine Sackler colloquium: stochastic epigenetic variation as a driving force of development, evolutionary adaptation, and disease. Proc. Natl. Acad. Sci. USA. 107 (1), 1757–1764. https://doi.org/10.1073/pnas.0906183107

    Article  PubMed  Google Scholar 

  48. Grundberg E., Meduri E., Sandling J.K., Hedman A.K., Keildson S., Buil A., Busche S., Yuan W., Nisbet J., Sekowska M., Wilk A., Barrett A., Small K.S., Ge B., Caron M., Shin S.Y.; Multiple Tissue Human Expression Resource Consortium; Lathrop M., Dermitzakis E.T., McCarthy M.I., Spector T.D., Bell J.T., Deloukas P. 2013. Global analysis of DNA methylation variation in adipose tissue from twins reveals links to disease-associated variants in distal regulatory elements. Am. J. Hum. Genet. 93 (5), 876–890. https://doi.org/10.1016/j.ajhg.2013.10.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ahsan M., Ek W.E., Rask-Andersen M., Karlsson T., Lind-Thomsen A., Enroth S., Gyllensten U., Johansson A. 2017. The relative contribution of DNA methylation and genetic variants on protein biomarkers for human diseases. PLoS Genet. 13 (9), 1007005. https://doi.org/10.1371/journal.pgen.1007005

    Article  CAS  Google Scholar 

  50. Zhou D., Li Z., Yu D., Wan L., Zhu Y., Lai M., Zhang D. 2015. Polymorphisms involving gain or loss of CpG sites are significantly enriched in trait-associated SNPs. Oncotarget. 6 (37), 39995–40004. https://doi.org/10.18632/oncotarget.5650

    Article  PubMed  PubMed Central  Google Scholar 

  51. Gong J., Wan H., Mei S., Ruan H., Zhang Z., Liu C., Guo A.Y., Diao L., Miao X., Han L. 2019. Pancan-meQTL: a database to systematically evaluate the effects of genetic variants on methylation in human cancer. Nucleic Acids Res. 47 (D1), D1066–D1072. https://doi.org/10.1093/nar/gky814

    Article  CAS  PubMed  Google Scholar 

  52. Babushkina N.P., Kucher A.N. 2023. Regulatory potential of SNP markers in genes of DNA repair systems. Mol. Biol. (Moscow). 57 (1), 19–38.

    Article  CAS  Google Scholar 

  53. Zaina S., Heyn H., Carmona F.J., Varol N., Sayols S., Condom E., Ramírez-Ruz J., Gomez A., Gonçalves I., Moran S., Esteller M. 2014. DNA methylation map of human atherosclerosis. Circ. Cardiovasc. Genet. 7 (5), 692–700. https://doi.org/10.1161/CIRCGENETICS.113.000441

    Article  CAS  PubMed  Google Scholar 

  54. Li J., Zhang X., Yang M., Yang H., Xu N., Fan X., Liu G., Jiang X., Fan J., Zhang L., Zhang H., Zhou Y., Li R., Gao S., Jin J., Jin Z., Zheng J., Tu Q., Ren J. 2021. DNA methylome profiling reveals epigenetic regulation of lipoprotein-associated phospholipase A2 in human vulnerable atherosclerotic plaque. Clin. Epigenetics. 13 (1), 161. https://doi.org/10.1186/s13148-021-01152-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Istas G., Declerck K., Pudenz M., Szic K.S.V., Lendinez-Tortajada V., Leon-Latre M., Heyninck K., Haegeman G., Casasnovas J.A., Tellez-Plaza M., Gerhauser C., Heiss C., Rodriguez-Mateos A., Berghe W.V. 2017. Identification of differentially methylated BRCA1 and CRISP2 DNA regions as blood surrogate markers for cardiovascular disease. Sci. Rep. 7 (1), 5120. https://doi.org/10.1038/s41598-017-03434-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to Cand. Sci. (Med.) A.V. Markov for help in experiment planning and preparation.

The study was performed using equipment of the Medical Genomics Collective Access Center (Tomsk National Research Medical Center) and the Biobank of the North Eurasian Population (Research Institute of Medical Genetics, Tomsk National Research Medical Center).

Funding

This work was supported by the Ministry of Science and Higher Education (project no. 122020300041-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. P. Babushkina.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement of compliance with standards of research involving humans as subjects. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants involved in the study. The study has been approved by the Ethics Committee at the Institute of Medical Genetics (protocol no. 10 dated February 15, 2021).

Additional information

Translated by T. Tkacheva

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babushkina, N.P., Zarubin, A.A., Koroleva, I.A. et al. Methylation of Regulatory Regions of DNA Repair Genes in Carotid Atherosclerosis. Mol Biol 57, 637–652 (2023). https://doi.org/10.1134/S0026893323040027

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893323040027

Keywords:

Navigation