Skip to main content
Log in

Differential Expression of a Foreign Gene in Arabidopsis Mitochondria In Organello

  • GENOMICS. TRANSCRIPTOMICS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Genetic transformation of higher eukaryote mitochondria in vivo is an unresolved and important problem. For efficient expression of foreign genetic material in mitochondria, it is necessary to select regulatory elements that provide a high level of transcription and transcript stability. This work is aimed at studying the effectiveness of regulatory elements of mitochondrial genes flanking exogenous DNA using the phenomenon of natural competence of plant mitochondria. For this purpose, genetic constructs carrying the GFP gene under the control of the promoter regions of the RRN26 or COX1 genes and one of the two 3'-untranslated regions (3'-UTR) of mitochondrial genes were imported into isolated Arabidopsis mitochondria, followed by transcription in organello. It was shown that the level of GFP expression under the control of promoters of the RRN26 or COX1 genes in organello correlates with the level of transcription of these genes observed in vivo. At the same time, the presence of the tRNATrp sequence in the 3'-UTR leads to a higher level of the GFP transcript than the presence in this region of the 3'-UTR of the NAD4 gene containing the binding site of the MTSF1 protein. The results we obtained open prospects for creating a system for efficient transformation of the mitochondrial genome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Larosa V., Remacle C. 2013. Transformation of the mitochondrial genome. Int. J. Dev. Biol. 57, 659–665. https://doi.org/10.1387/ijdb.130230cr

    Article  CAS  PubMed  Google Scholar 

  2. Remacle C., Larosa V., Salinas T., Hamel P., Subrahmanian N., Bonnefoy N., Kempken F. 2012. Transformation and nucleic acid delivery to mitochondria. In Genomics of Chloroplasts and Mitochondria. Advances in Photosynthesis and Respiration. 35. Bock R., Knoop V., Eds. Dordrecht: Springer. https://doi.org/10.1007/978-94-007-2920-9_19

  3. Hammani K., Giegé P. 2014. RNA metabolism in plant mitochondria. Trends Plant Sci. 19, 380‒389. https://doi.org/10.1016/j.tplants.2013.12.008

    Article  CAS  PubMed  Google Scholar 

  4. Konstantinov Y.M., Dietrich A., Weber-Lotfi F., Ibrahim N., Klimenko E.S., Tarasenko V.I., Bolotova T.A., Koulintchenko M.V. 2016. DNA import into mitochondria. Biochemistry (Moscow). 81, 1044–1056. https://doi.org/10.1134/S0006297916100035

    Article  CAS  PubMed  Google Scholar 

  5. Koulintchenko M., Temperley R.J., Mason P.A., Dietrich A., Lightowlers R.N. 2006. Natural competence of mammalian mitochondria allows the molecular investigation of mitochondrial gene expression. Hum. Mol. Genet. 15, 143–154. https://doi.org/10.1093/hmg/ddi435

    Article  CAS  PubMed  Google Scholar 

  6. Tarasenko T.A., Klimenko E.S., Tarasenko V.I., Koulintchenko M.V., Dietrich A., Weber-Lotfi F., Konstantinov Y.M. 2021. Plant mitochondria import DNA via alternative membrane complexes involving various VDAC isoforms. Mitochondrion. 60, 43‒58. https://doi.org/10.1016/j.mito.2021.07.006

    Article  CAS  PubMed  Google Scholar 

  7. Kühn K., Weihe A., Börner T. 2005. Multiple promoters are a common feature of mitochondrial genes in Arabidopsis. Nucleic Acids Res. 33, 337–346. https://doi.org/10.1093/nar/gki179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kühn K., Richter U., Meyer E., Delannoy E., de Longevialle A.F., O′Toole N., Börner T., Millar A., Small I., Whelan J. 2009. Phage-type RNA polymerase RPOTmp performs gene-specific transcription in mitochondria of Arabidopsis thaliana. Plant Cell. 21, 2762–2779. https://doi.org/10.1105/tpc.109.068536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Moller I.M., Rasmusson A.G., Van Aken O. 2021. Plant mitochondria—past, present and future. Plant J. 108, 912–959. https://doi.org/10.1111/tpj.15495

    Article  CAS  PubMed  Google Scholar 

  10. Holec S., Lange H., Kuhn K., Alioua M., Borner T., Gagliardi D. 2006. Relaxed transcription in Arabidopsis mitochondria is counterbalanced by RNA stability control mediated by polyadenylation and polynucleotide phosphorylase. Mol. Cell. Biol. 26, 2869–2876, https://doi.org/10.1128/MCB.26.7.2869-2876.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Perrin R., Meyer E.H., Zaepfel M., Kim Y.J., Mache R., Grienenberger J.M., Gualberto J.M., Gagliardi D. 2004. Two exoribonucleases act sequentially to process mature 3′-ends of atp9 mRNAs in Arabidopsis mitochondria. J. Biol. Chem. 279, 25440–25446. https://doi.org/10.1074/jbc.M401182200

    Article  CAS  PubMed  Google Scholar 

  12. Haïli N., Arnal N., Quadrado M., Amiar S., Tcherkez G., Dahan J., Briozzo P., Colas des Francs-Small C., Vrielynck N., Mireau H. 2013. The pentatricopeptide repeat MTSF1 protein stabilizes the nad4 mRNA in Arabidopsis mitochondria. Nucleic Acids Res. 41, 6650–6663. https://doi.org/10.1093/nar/gkt337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ruwe H., Wang G., Gusewski S., Schmitz-Linneweber C. 2016. Systematic analysis of plant mitochondrial and chloroplast small RNAs suggests organelle-specific mRNA stabilization mechanisms. Nucleic Acids Res. 44, 7406–7417. https://doi.org/10.1093/nar/gkw466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Forner J., Weber B., Thuss S., Wildum S., Binder S. 2007. Mapping of mitochondrial mRNA termini in Arabidopsis thaliana: T-elements contribute to 5′ and 3′‑end formation. Nucleic Acids Res. 35, 3676–3692. https://doi.org/10.1093/nar/gkm270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. MacIntosh G.C., Castandet B. 2020. Organellar and secretory ribonucleases: major players in plant RNA homeostasis. Plant Physiol. 183, 1438–1452. https://doi.org/10.1104/pp.20.00076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dombrowski S., Brennicke A., Binder S. 1997. 3′-Inverted repeats in plant mitochondrial mRNAs are processing signals rather than transcription terminators. EMBO J. 16, 5069–5076. https://doi.org/10.1093/emboj/16.16.5069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kuhn J., Tengler U., Binder S. 2001. Transcript lifetime is balanced between stabilizing stem-loop structures and degradation promoting polyadenylation in plant mitochondria. Mol. Cell. Biol. 21, 731–742. https://doi.org/10.1128/MCB.21.3.731-742.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang C., Aubé F., Planchard N., Quadrado M., Dargel-Graffin C., Nogué F., Mireau H. 2017. The pentatricopeptide repeat protein MTSF2 stabilizes a nad1 precursor transcript and defines the 3′ end of its 5′-half intron. Nucleic Acids Res. 45, 6119‒6134 https://doi.org/10.1093/nar/gkx162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang C., Blondel L., Quadrado M., Dargel-Graffin C., Mireau H. 2022. Pentatricopeptide repeat protein MIT-CHONDRIAL STABILITY FACTOR 3 ensures mitochondrial RNA stability and embryogenesis. Plant Physiol. 190, 669‒681. https://doi.org/10.1093/plphys/kiac309

    Article  CAS  PubMed  Google Scholar 

  20. Koulintchenko M., Konstantinov Y., Dietrich A. 2003. Plant mitochondria actively import DNA via the permeability transition pore complex. EMBO J. 22, 1245–1254. https://doi.org/10.1093/emboj/cdg128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sweetlove L.J., Taylor N.L., Leaver C.J. 2007. Isolation of intact, functional mitochondria from the model plant Arabidopsis thaliana. Methods Mol. Biol. 372, 125–136. https://doi.org/10.1007/978-1-59745-365-3_9

    Article  CAS  PubMed  Google Scholar 

  22. Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal. Biochem. 72, 248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  23. Douce R., Neuburger M. 1989. The uniqueness of plant mitochondria. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40, 371–414. https://doi.org/10.1146/annurev.pp.40.060189.002103

    Article  CAS  Google Scholar 

  24. Tarasenko T.A., Subota I.Yu., Tarasenko V. I., Konstantinov Y.M., Koulintchenko M.V. 2020. Plant mitochondrial subfractions have different ability to import DNA. Theor. Exp. Plant Physiol. 32, 5–18. https://doi.org/10.1007/s40626-020-00167-w

    Article  CAS  Google Scholar 

  25. Tarasenko T.A., Tarasenko V.I., Koulintchenko M.V., Klimenko E.S., Konstantinov Y.M. 2019. DNA import into plant mitochondria: complex approach for in organello and in vivo studies. Biochemistry (Moscow). 84, 817–828. https://doi.org/10.1134/S0006297919070113

    Article  CAS  PubMed  Google Scholar 

  26. Farré J.C., Araya A. 2001. Gene expression in isolated plant mitochondria: High fidelity of transcription, splicing and editing of a transgene product in electroporated organelles. Nucleic Acids Res. 29, 2484–2491. https://doi.org/10.1093/nar/29.12.2484

    Article  PubMed  PubMed Central  Google Scholar 

  27. Tarasenko V.I., Katyshev A.I., Yakovleva T.V., Garnik E.Y., Chernikova V.V., Konstantinov Y.M., Koulintchenko M.V. 2016. RPOTmp, an Arabidopsis RNA polymerase with dual targeting, plays an important role in mitochondria, but not in chloroplasts. J. Exp. Bot. 67, 5657–5669. https://doi.org/10.1093/jxb/erw327

    Article  CAS  PubMed  Google Scholar 

  28. Kühn K., Bohne A.V., Liere K., Weihe A., Börner T. 2007. Arabidopsis phage-type RNA polymerases: accurate in vitro transcription of organellar genes. Plant Cell. 19, 959–971. https://doi.org/10.1105/tpc.106.046839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Binder S., Hatzack F., Brennicke A. 1995. A novel pea mitochondrial in vitro transcription system recognizes homologous and heterologous mRNA and tRNA promoters. J. Biol. Chem. 270, 22182‒2218. https://doi.org/10.1074/jbc.270.38.22182

    Article  CAS  PubMed  Google Scholar 

  30. Rovira A.G., Smith A.G. 2019. PPR proteins—orchestrators of organelle RNA metabolism. Physiol. Plant. 166, 451‒459. https://doi.org/10.1111/ppl.12950

    Article  CAS  PubMed  Google Scholar 

  31. Hanic-Joyce P.J., Gray M.W. 1991. Accurate transcription of a plant mitochondrial gene in vitro. Mol. Cell Biol. 11, 2035‒2039. https://doi.org/10.1128/mcb.11.4.2035-2039.1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Attardi G., Chomyn A., King M.P., Kruse B., Polosa P.L., Murdter N.N. 1990. Regulation of mitochondrial gene expression in mammalian cells. Biochem. Soc. Trans. 18, 509‒513. https://doi.org/10.1042/bst0180509

    Article  CAS  PubMed  Google Scholar 

  33. Micol V., Fernández-Silva P., Attardi G. 1997. Functional analysis of in vivo and in organello footprinting of HeLa cell mitochondrial DNA in relationship to ATP and ethidium bromide effects on transcription. J. Biol. Chem. 272, 18896‒18904. https://doi.org/10.1074/jbc.272.30.18896

    Article  CAS  PubMed  Google Scholar 

  34. Kotrys A.V., Szczesny R.J. 2019. Mitochondrial gene expression and beyond-novel aspects of cellular physiology. Cells. 9, 17. https://doi.org/10.3390/cells9010017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Newton K.J., Winberg B., Yamato K., Lupold S., Stern D.B. 1995. Evidence for a novel mitochondrial promoter preceding the cox2 gene of perennial teosintes. EMBO J. 14, 585‒593. https://doi.org/10.1002/j.1460-2075.1995.tb07034.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xiao S., Zang J., Pei Y., Liu J., Liu J., Song W., Shi Z., Su A., Zhao J., Chen H. 2020. Activation of mitochondrial orf355 gene expression by a nuclear-encoded DREB transcription factor causes cytoplasmic male sterility in maize. Mol. Plant. 13, 1270‒1283. https://doi.org/10.1016/j.molp.2020.07.002

    Article  CAS  PubMed  Google Scholar 

  37. Tarasenko V.I., Subota I.Yu., Kobzev V.F., Konstantinov Yu.M. 2005. Isolation of mitochondrial DNA-binding proteins specific to the maize cox1 promoter. Mol. Biol. (Moscow). 39 (3), 350‒356. )https://doi.org/10.1007/s11008-005-0049-1

    Article  CAS  Google Scholar 

  38. Rapp W.D., Stern D.B. 1992. A conserved 11 nucleotide sequence contains an essential promoter element of the maize mitochondrial atp1 gene. EMBO J. 11, 1065‒1073. https://doi.org/10.1002/j.1460-2075.1992.tb05145.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

The equipment of the Bioanalytika Center for Collective Use, Siberian Institute of Plant Physiology and Biochemistry of the Siberian Branch of the Russian Academy of Sciences (Irkutsk) was used in the work.

Funding

The study was supported by the Russian Science Foundation grant No. 22-74-00114, https://rscf.ru/project/22-74-00114/.

Author information

Authors and Affiliations

Authors

Contributions

V.I. Tarasenko and T.A. Tarasenko contributed equally to this study.

Corresponding author

Correspondence to T. A. Tarasenko.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain a description of studies performed by the authors involving humans or using animals as objects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarasenko, V.I., Tarasenko, T.A., Gorbenko, I.V. et al. Differential Expression of a Foreign Gene in Arabidopsis Mitochondria In Organello. Mol Biol 57, 447–456 (2023). https://doi.org/10.1134/S0026893323030123

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893323030123

Keywords:

Navigation