Skip to main content
Log in

Recombinase Polymerase Amplification for Rapid Detection of Human Bacterial Pneumonia Pathogens

  • METHODS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

A diagnostic system based on recombinase polymerase amplification (RPA) has been developed to identify six bacterial pathogens of human pneumonia. Species-specific primers have been designed and optimized to conduct a multiplex reaction in one common volume. Labeled primers were used for reliable discrimination of amplification products that are similar in size. Identification of the pathogen was carried out by visual analysis of an electrophoregram. The analytical sensitivity of the developed multiplex RPA was 102–103 copies of DNA. The specificity of the system was determined by the absence of cross-amplification of the studied DNA samples of pneumonia pathogens for each pair of primers, as well as for the DNA of Mycobacterium tuberculosis H37rv, and amounted to 100%. The execution time of the analysis is less than an 1 h, including the electrophoretic reaction control. The test system can be used in specialized clinical laboratories for rapid analysis of samples from patients with suspected pneumonia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Campigotto A., Mubareka S. 2015. Influenza-associated bacterial pneumonia; managing and controlling infection on two fronts. Expert. Rev. Anti. Infect. Ther. 13, 55–68.

    Article  CAS  PubMed  Google Scholar 

  2. Noskin G.A., Glassroth J. 1996. Bacterial pneumonia associated with HIV-1 infection. Clin. Chest. Med. 17, 713–723.

    Article  CAS  PubMed  Google Scholar 

  3. Henig O., Kaye K.S. 2017. Bacterial pneumonia in older adults. Infect. Dis. Clin. North Am. 31, 689–713.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Eshwara V.K., Mukhopadhyay C., Rello J. 2020. Community-acquired bacterial pneumonia in adults: an update. Indian J. Med. Res. 151, 287–302.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Harris M., Clark J., Coote N., Fletcher P., Harnden A., McKean M., Thomson A. 2011. British thoracic society standards of care committee. British thoracic society guidelines for the management of community acquired pneumonia in children: update 2011. Thorax. 66 (suppl. 2), ii1–ii23.

    Article  PubMed  Google Scholar 

  6. Cunha B.A. 2006. The atypical pneumonias: clinical diagnosis and importance. Clin. Microbiol. Infect. 12 (suppl. 3), 12–24.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Azoulay E., Russell L., Van de Louw A., Metaxa V., Bauer P., Povoa P., Montero J.G., Loeches I.M., Mehta S., Puxty K., Schellongowski P., Rello J., Mokart D., Lemiale V., Mirouse A. 2020. Diagnosis of severe respiratory infections in immunocompromised patients. Intensive Care Med. 46, 298–314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mabie M., Wunderink R.G. 2003. Use and limitations of clinical and radiologic diagnosis of pneumonia. Semin. Respir. Infect. 18, 72–79.

    PubMed  Google Scholar 

  9. Budayanti N.S., Suryawan K., Iswari I.S., Sukrama D.M. 2019. The quality of sputum specimens as a predictor of isolated bacteria from patients with lower respiratory tract infections at a tertiary referral hospital, Denpasar, Bali-Indonesia. Front. Med. (Lausanne). 6, 64.

    Article  Google Scholar 

  10. Lee N., Rainer T.H., Ip M., Zee B., Ng M.H., Antonio G.E., Chan E., Lui G., Cockram C.S., Sung J.J., Hui D.S. 2006. Role of laboratory variables in differentiating SARS-coronavirus from other causes of community-acquired pneumonia within the first 72 h of hospitalization. Eur. J. Clin. Microbiol. Infect. Dis. 25, 765–772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dorigo-Zetsma J.W., Zaat S.A., Wertheim-van Dillen P.M., Spanjaard L., Rijntjes J., van Waveren G., Jensen J.S., Angulo A.F., Dankert J. 1999. Comparison of PCR, culture, and serological tests for diagnosis of Mycoplasma pneumoniae respiratory tract infection in children. J. Clin. Microbiol. 37, 14–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lapa S.A., Klochikhina E.S., Miftakhov R.A., Zolotov A.M., Zasedatelev A.S., Chudinov A.V. 2020. Multiplex PCR for identification of bacterial pathogens of infectious pneumonia. Russ. J. Bioorg. Chem. 46 (5), 859–861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lapa S.A., Klochikhina E.S., Miftakhov R.A., Zasedatelev A.S., Chudinov A.V. 2021. Development of multi-primer PCR system with an open architecture for rapid detection of infectious pneumonia causative agents. AIP Conf. Proc. 2388, 030018.

    Article  CAS  Google Scholar 

  14. Piepenburg O., Williams C.H., Stemple D.L., Armes N.A. 2006. DNA detection using recombination proteins. PLoS Biol. 4, e204.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lobato I.M., O’Sullivan C.K. 2018. Recombinase polymerase amplification: basics, applications and recent advances. Trends Anal. Chem. 98, 19–35.

    Article  CAS  Google Scholar 

  16. Wilson K. 2001. Preparation of genomic DNA from bacteria. Curr. Protoc. Mol. Biol. 56, 2.4.1–2.4.5.

  17. Lapa S.A., Miftakhov R.A., Klochikhina E.S., Sh-ershov V.E., Zasedatelev A.S., Chudinov A.V., Ammur Y.I., Blagodatskikh S.A. 2021. Development of multiplex RT-PCR with immobilized primers for identification of infectious human pneumonia pathogens. Mol. Biol. (Moscow). 55 (6), 828‒838. https://doi.org/10.1134/S0026893321040063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Klochikhina E.S., Shershov V.E., Kuznetsova V.E., Lapa S.A., Chudinov A.V. 2021. Specificities of multi-primer polymerase chain reaction optimization for the detection of infectious pneumonia agents in human. Fine Chem. Technol. 16 (3), 225‒231.

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported by a grant Russian Science Foundation (no. 22-14-00257).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Lapa.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain a description of any research involving humans or animals as subjects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lapa, S.A., Surzhikov, S.A., Blagodatskikh, S.A. et al. Recombinase Polymerase Amplification for Rapid Detection of Human Bacterial Pneumonia Pathogens. Mol Biol 57, 544–549 (2023). https://doi.org/10.1134/S0026893323030068

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893323030068

Keywords:

Navigation