We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content
Log in

The N-Terminal 6×His Tag on β-Clamp Processivity Factor Occludes Gly66 and Affects the Growth of Escherichia coli B834 (DE3) Cells

  • MOLECULAR CELL BIOLOGY
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

The affinity tags in fusion proteins are extensively used in protein expression techniques. The most common affinity tags, such as glutathione S-transferase (GST), poly-histidine, maltose binding protein (MBP), and streptavidin tags, are routinely used for increasing expression, improving solubility, and facilitating protein purification. The large affinity tags (MBP, GST) are known to influence the conformational homogeneity and, therefore, the three-dimensional structure of in vivo folded proteins. The current study described in vivo effects of small affinity fusion 6×His tag on the growth of cells. Hexa-histidine tagged full length β-clamp and non-hexa-histidine tagged β-clamp were over-expressed and co-expressed in possible combinations with truncated DnaE in E. coli expression strain. After the induction with IPTG, the protein expression was assessed by SDS PAGE. The comparative analysis of the growth curves generated for the induced and un-induced cells demonstrated a decrease in growth rates of the cells over-expressing non-6×His tagged β-clamp as compared to 6×His tagged β-clamp. Based on the analysis of the soluble and insoluble protein fractions by SDS PAGE gels and published His-tagged β-clamp structure (PDB: 4K74) we propose that N-terminal 6×His Tag on β-clamp occludes its Gly66 to ultimately affect its ability to interact with the δ subunit of the clamp loader.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Goedken E.R., Kazmirski S.L., Bowman G.D., O’Donnell M., Kuriyan J. 2005. Mapping the interaction of DNA with the Escherichia coli DNA polymerase clamp loader complex. Nat. Struct. Mol. Biol. 12, 183–190.

    Article  CAS  PubMed  Google Scholar 

  2. Scouten Ponticelli S.K., Duzen J.M., Sutton M.D. 2009. Contributions of the individual hydrophobic clefts of the Escherichia coli beta sliding clamp to clamp loading, DNA replication and clamp recycling. Nucleic Acids Res. 37, 2796–2809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Burgers P.M., Kornberg A., Sakakibara Y. 1981. The dnaN gene codes for the beta subunit of DNA polymerase III holoenzyme of Escherichia coli. Proc. Natl. Acad. Sci. U. S. A. 78, 5391–5395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kuriyan J., O’Donnell M. 1993. Sliding clamps of DNA polymerases. J. Mol. Biol. 234, 915–925.

    Article  CAS  PubMed  Google Scholar 

  5. Lehman I.R. 1974. DNA ligase: Structure, mechanism, and function. Science. 186, 790–797.

    Article  CAS  PubMed  Google Scholar 

  6. Kong X.P., Onrust R., O’Donnell M., Kuriyan J. 1992. Three-dimensional structure of the beta subunit of E. coli DNA polymerase III holoenzyme: A sliding DNA clamp. Cell. 69, 425–437.

    Article  CAS  PubMed  Google Scholar 

  7. Georgescu R.E., Kim S.S., Yurieva O., Kuriyan J., Kong X.P., O’Donnell M. 2008a. Structure of a sliding clamp on DNA. Cell. 132 (1), 43–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Duzen J.M., Walker G.C., Sutton M.D. 2004. Identification of specific amino acid residues in the E. coli beta processivity clamp involved in interactions with DNA polymerase III, UmuD and UmuD'. DNA Repair. 3 (3), 301–312.

    Article  CAS  PubMed  Google Scholar 

  9. Gulbis J.M., Kelman Z., Hurwitz J., O’Donnell M., Kuriyan J. 1996. Structure of the C-terminal region of p21 (WAF1/CIP1) complexed with human PCNA. Cell. 87, 297–306.

    Article  CAS  PubMed  Google Scholar 

  10. Burnouf D.Y., Olieric V., Wagner J., Fujii S., Reinbolt J., Fuchs R.P., Dumas P. 2004. Structural and biochemical analysis of sliding clamp/ligand interactions suggest a competition between replicative and translesion DNA polymerases. J. Mol. Biol. 335 (5), 1187–1197.

    Article  CAS  PubMed  Google Scholar 

  11. Bunting K.A., Roe S.M., Pearl L.H. 2003. Structural basis for recruitment of translesion DNA polymerase Pol IV/DinB to the beta-clamp. EMBO J. 22, 5883–5892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yao N., Turner J., Kelman Z., Stukenberg P.T., Dean F., Shechter D., Pan Z.-Q., Hurwitz J., O’Donnell M. 1996. Clamp loading, unloading and intrinsic stability of the PCNA, β and gp45 sliding clamps of human, E. coli and T4 replicases. Genes Cells. 1 (1), 101–113. https://doi.org/https://doi.org/10.1046/j.1365-2443.1996.07007.x.

    Article  CAS  PubMed  Google Scholar 

  13. Jeruzalmi D., Yurieva O., Zhao Y., Young M., Stewart J., Hingorani M., O’Donnell M., Kuriyan J. 2001. Mechanism of processivity clamp opening by the delta subunit wrench of the clamp loader complex of E. coli DNA polymerase III. Cell. 106, 417–428.

    Article  CAS  PubMed  Google Scholar 

  14. Stewart J., Hingorani M.M., Kelman Z., O’Donnell M. 2001. Mechanism of β clamp opening by the delta subunit of Escherichia coli DNA polymerase III holoenzyme. J. Biol. Chemistry. 276 (22), 19182–19189.

    Article  CAS  Google Scholar 

  15. Heltzel J.M., Scouten Ponticelli S.K., Sanders L.H., Duzen J.M., Cody V., Pace J., Snell E.H., Sutton M.D. 2009. Sliding clamp-DNA interactions are required for viability and contribute to DNA polymerase management in Escherichia coli. J. Mol. Biol. 387, 74–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lamers M.H., Georgescu R.E., Lee S.G., O’Donnell M., Kuriyan J. 2006. Crystal structure of the catalytic alpha subunit of E. coli replicative DNA polymerase III. Cell. 126 (5), 881–892.

    Article  CAS  PubMed  Google Scholar 

  17. Dohrmann P.R., McHenry C.S. 2005. A bipartite polymerase-processivity factor interaction: Only the internal beta binding site of the alpha subunit is required for processive replication by the DNA polymerase III holoenzyme. J. Mol. Biol. 350 (2), 228–239.

    Article  CAS  PubMed  Google Scholar 

  18. Doherty A.J., Serpell L.C., Ponting C.P. 1996. The helix-hairpin-helix DNA-binding motif: A structural basis for non-sequence-specific recognition of DNA. Nucleic Acids Res. 24, 2488–2497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Theobald D.L., Mitton-Fry R.M., Wuttke D.S. 2003. Nucleic acid recognition by OB fold proteins. Annu. Rev. Biophys. Biomol. Struct. 32, 115–133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Georgescu R.E., Kurth I., Yao N.Y., Stewart J., Yurieva O., O’Donnell M. 2009. Mechanism of polymerase collision release from sliding clamps on the lagging strand. EMBO J. 28 (19), 2981–2991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dalrymple B.P., Kongsuwan K., Wijffels G., Dixon N.E., Jennings P.A. 2001. A universal protein–protein interaction motif in the eubacterial DNA replication and repair systems. Proc. Natl. Acad. Sci. U. S. A. 98 (20), 11627–11632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fribourg S.1., Romier C., Werten S., Gangloff Y.G., Poterszman A., Moras D. 2001. Dissecting the interaction network of multiprotein complexes by pairwise coexpression of subunits in E. coli. J. Mol. Biol. 306 (2), 363–373.

    Article  CAS  PubMed  Google Scholar 

  23. Patoli A.A., Winter J.A., Bunting K.A. 2013. The UmuC subunit of the E. coli DNA polymerase V shows a unique interaction with the β-clamp processivity factor. BMC Struct. Biol. 13, 12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Delmas S., Matic I. 2006. Interplay between replication and recombination in Escherichia coli: Impact of the alternative DNA polymerases. Proc. Natl. Acad. Sci. U. S. A. 103, 4564–4569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sutton M.D. 2004. The Escherichia coli dnaN159 mutant displays altered DNA polymerase usage and chronic SOS induction. J. Bacteriol. 186, 6738–6748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Maul R.W., Ponticelli S.K., Duzen J.M., Sutton M.D. 2007. Differential binding of Escherichia coli DNA polymerases to the beta-sliding clamp. Mol. Microbiol. 65, 811–827.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. A. Patoli or B. B. Patoli.

Additional information

The text was submitted by the author(s) in English.

Place of Study: School of Biology, Queens Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patoli, A.A., Patoli, B.B. The N-Terminal 6×His Tag on β-Clamp Processivity Factor Occludes Gly66 and Affects the Growth of Escherichia coli B834 (DE3) Cells. Mol Biol 53, 32–37 (2019). https://doi.org/10.1134/S0026893319010126

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893319010126

Keywords:

Navigation