Skip to main content
Log in

Transmission of pathogenic protein aggregates in Alzheimer’s disease

  • Reviews
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Deposits of amyloid peptide Aβ and intracellular aggregates of hyperphosphorylated tau protein in the brain of patients are major neuropathological features of Alzheimer’s disease (AD). For a long time, the possibility of horizontal transmission of Aβ aggregates from cell to cell and from person to person remained hypothetical, since there was no experimental evidence. However, in 1993, the formation of senile plaques was confirmed in the brains of animals after intracerebral injections of AD patient brain homogenates. or homogenates of the brain of transgenic mice enriched with Aβ aggregates Other experiments indicate that amyloid peptide Aβ and intracellular aggregates of hyperphosphorylated tau protein may be transferred from cell to cell like prions. In 2015 and 2016, it was reported that AD could be transmitted to humans during medical procedures, i.e., that this disease might be iatrogenic. This review discusses the mechanisms by which pathogenic Aβ protein can be transmitted between cells and analyzes the current evidence concerning the possibility of horizontal Aβ transmission from person to person.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Davis K.L., Samuels S.C. 1998. Dementia and delerium. In: Pharmacological Management of Neurological and Psychiatric Disorders, Eds. Enna S.J., Coyle J.T. New York: McGraw-Hill, 267–316.

    Google Scholar 

  2. Goedert M., Spillantini M.G. 2006. A century of Alzheimer’s disease. Science. 314, 777–781.

    Article  CAS  PubMed  Google Scholar 

  3. Hardy J., Selkoe D.J. 2002. The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science. 297, 353–356.

    Article  CAS  PubMed  Google Scholar 

  4. Kulikova A.A., Makarov A.A., Kozin S.A. 2015. Roles of zinc ions and structural polymorphism of β-amyloid in the development of Alzheimer’s disease. Mol. Biol. (Moscow). 49 (2), 217–230

    Article  CAS  Google Scholar 

  5. Kulikova A.A., Cheglakov I.B., Kukharsky M.S., Ovchinnikov R.K., Kozin S.A., Makarov A.A. 2016. Intracerebral injection of metal-binding domain of Aβ comprising the isomerized Asp7 increases the amyloid burden in transgenic mice. Neurotox Res. 29 (4), 551–557.

    Article  CAS  PubMed  Google Scholar 

  6. Haass C., Selkoe D.J. 2007. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide. Nat. Rev. Mol. Cell. Biol. 8, 101–112.

    Article  CAS  PubMed  Google Scholar 

  7. De Strooper B. 2010. Proteases and proteolysis in Alzheimer disease: A multifactorial view on the disease process. Physiol. Rev. 90, 465–494.

    Article  PubMed  Google Scholar 

  8. Soto C. 2003. Unfolding the role of protein misfolding in neurodegenerative diseases. Nat. Rev. Neurosci. 4, 49–60.

    Article  CAS  PubMed  Google Scholar 

  9. Aguzzi A., Calella A.M. 2009. Prions: Protein aggregation and infectious diseases. Physiol Rev. 89, 1105–1152.

    Article  CAS  PubMed  Google Scholar 

  10. Aguzzi A., Polymenidou M. 2004. Mammalian prion biology: One century of evolving concepts. Cell. 116, 313–327.

    Article  CAS  PubMed  Google Scholar 

  11. Jarrett J.T., Lansbury P.T., Jr. 1993. Seeding “onedimensional crystallization” of amyloid: A pathogenic mechanism in Alzheimer’s disease and scrapie? Cell. 73, 1055–1058.

    Article  CAS  PubMed  Google Scholar 

  12. Lansbury P.T., Jr. 1997. Structural neurology: Are seeds at the root of neuronal degeneration? Neuron. 19, 1151–1154.

    Article  CAS  PubMed  Google Scholar 

  13. Soto C., Estrada L., Castilla J. 2006. Amyloids, prions and the inherent infectious nature of misfolded protein aggregates. Trends Biochem. Sci. 31 (3), 150–155.

    Article  CAS  PubMed  Google Scholar 

  14. Baker H.F., Ridley R.M., Duchen L.W., Crow T.J., Bruton C.J. 1993. Evidence for the experimental transmission of cerebral β-amyloidosis to primates. Int. J. Exp. Pathol. 74, 441–454.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Goldgaber D., Davies P., Gambetti P., Walker L.C., Friedland R.P., White L.R., Piccard P., Asher D.M. 2010. Transmission of Alzheimer’s amyloidosis to chimpanzees and monkeys: Revisited. Alzheimer’s and Dementia. 64, 1–263.

    Google Scholar 

  16. Morales R., Duran-Aniotz C., Castilla J., Estrada L.D., Soto C. 2012. De novo induction of amyloid-β deposition in vivo. Mol. Psychiatry. 17, 1347–1353.

    Article  CAS  PubMed  Google Scholar 

  17. Meyer-Luehmann M., Coomaraswamy J., Bolmont T., Kaeser S., Schaefer C., Kilger E., Neuenschwander A., Abramowski D., Frey P., Jaton A.L., Vigouret J.M., Paganetti P., Walsh D.M., Mathews P.M., Ghiso J., et al. 2006. Exogenous induction of cerebral beta-amyloidogenesis is governed by agent and host. Science. 313, 1781–1784.

    Article  CAS  PubMed  Google Scholar 

  18. Jucker M., Walker L.C. 2013. Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature. 501, 45–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Eisele Y.S., Obermüller U., Heilbronner G., Baumann F., Kaeser S.A., Wolburg H., Walker L.C., Staufenbiel M., Heikenwalder M., Jucker M. 2010. Peripherally applied Abeta-containing inoculates induce cerebral beta-amyloidosis. Science. 330, 980–982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kozin S.A., Cheglakov I.B., Ovsepyan A.A., Telegin G.B., Tsvetkov P.O., Lisitsa A.V., Makarov A.A. 2013. Peripherally applied synthetic peptide isoAsp7-Aβ(1-42). triggers cerebral β-amyloidosis. Neurotox. Res. 24 (3), 370–376

    Article  CAS  PubMed  Google Scholar 

  21. Ye L., Fritschi S.K., Schelle J., Obermüller U., Degenhardt K., Kaeser S.A., Eisele Y.S., Walker L.C., Baumann F., Staufenbiel M., Jucker M. 2015. Persistence of Aβ seeds in APP null mouse brain. Nat. Neurosci. 11, 1559–1561.

    Article  Google Scholar 

  22. Clavaguera F., Bolmont T., Crowther R.A., Abramowski D., Frank S., Probst A., Fraser G., Stalder A.K., Beibel M., Jucker M., Goedert M., Tolnay M. 2009. Transmission and spreading of tauopathy in transgenic mouse brain. Nat. Cell Biol. 11, 909–913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Clavaguera F., Akatsu H., Fraser G., Crowther R.A., Frank S., Hench J., Probst A., Winkler D.T., Reichwald J., Staufenbiel M., Ghetti B., Goedert M., Tolnay M. 2013. Brain homogenates from human tauopathies induce tau inclusions in mouse brain. Proc. Natl. Acad. Sci. U.S. A. 110, 9535–9540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Guo J.L., Lee, V.M. 2013. Neurofibrillary tangle-like tau pathology induced by synthetic tau fibrils in primary neurons over-expressing mutant tau. FEBS Lett. 587, 717–723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Baldwin M.A., Cohen F.E., Prusiner S.B. 1995. Prion protein isoforms, a convergence of biological and structural investigations. J. Biol. Chem. 270, 19197–19200.

    Article  CAS  PubMed  Google Scholar 

  26. Cohen F.E., Prusiner S.B. 1998. Pathologic conformations of prion proteins. Annu. Rev. Biochem. 67, 793–819.

    Article  CAS  PubMed  Google Scholar 

  27. Saborio G.P., Permanne B., Soto C. 2001. Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding. Nature. 411, 810–813.

    Article  CAS  PubMed  Google Scholar 

  28. Barria M., Gonzalez-Romero D., Soto C. 2012. Cyclic amplification of prion protein misfolding. Meth. Mol. Biol. 849, 199–212.

    Article  CAS  Google Scholar 

  29. Salvadores N., Shahnawaz M., Scarpini E., Tagliavini F., Soto C. 2014. Detection of misfolded Aβ oligomers for sensitive biochemical diagnosis of Alzheimer’s disease. Cell Rep. 7, 261–268.

    Article  CAS  PubMed  Google Scholar 

  30. Herva M.E., Zibaee S., Fraser G., Barker R.A., Goedert M., Spillantini M.G. 2014. Anti-amyloid compounds inhibit α-synuclein aggregation induced by protein misfolding cyclic amplification (PMCA). J. Biol. Chem. 289, 11897–11905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jaunmuktane Z., Simon Mead S., Ellis M., Wadsworth J.D.F., Nicoll A.J., Kenny J., Launchbury F., Linehan J., Richard-Loendt A., Sarah Walker S., Rudge P., Collinge J., Brandner S. 2015. Evidence for human transmission of amyloid-β-pathology and cerebral amyloid angiopathy. Nature. 525, 247–250.

    Article  CAS  PubMed  Google Scholar 

  32. Swerdlow A.J., Higgins C.D., Adlard P., Jones M.E., Preece M.A. 2003. Creutzfeldt–Jakob disease in United Kingdom patients treated with human pituitary growth hormone. Neurology. 61, 783–791.

    Article  CAS  PubMed  Google Scholar 

  33. Brown P., Brandel J.P., Sato T., Nakamura Y., MacKenzie J., Will R.G., Ladogana A., Pocchiari M., Leschek E.W., Schonberger L.B. 2012. Iatrogenic Creutzfeldt–Jakob disease, final assessment. Emerg. Infect. Dis. 6, 901–907.

    Article  Google Scholar 

  34. Frontzek K., Lutz M.I., Aguzzi A., Kovacs G.G., Budka H. 2016. Amyloid-β pathology and cerebral amyloid angiopathy are frequent in iatrogenic Creutzfeldt–Jakob disease after dural grafting. Swiss Med. Wkly. 146, w14287.

  35. Glenner G.G., Wong C.W. 1984. Alzheimer’s disease: Initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun. 120, 885–890.

    Article  CAS  PubMed  Google Scholar 

  36. Kosik K.S., Joachim C.L., Selkoe D.J. 1986. Microtubule- associated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer disease. Proc. Natl. Acad. Sci. U.S. A. 83, 4044–4048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Spillantini M.G., Crowther R.A., Jakes R., Hasegawa M., Goedert M. 1998). α-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies. Proc. Natl. Acad. Sci. U.S. A. 95, 6469–6473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Neumann M., Sampathu D.M., Kwong L.K., Truax A.C., Micsenyi M.C., Chou T.T., Bruce J., Schuck T., Grossman M., Clark C.M., McCluskey L.F., Miller B.L., Masliah E., Mackenzie I.R., Feldman H., et al. 2006. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science. 314, 130–133.

    Article  CAS  PubMed  Google Scholar 

  39. DiFiglia M., Sapp E., Chase K.O., Davies S.W., Bates G.P., Vonsattel J.P., Aronin N. 1997. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science. 277, 1990–1993.

    Article  CAS  PubMed  Google Scholar 

  40. Ross E.D., Minton A., Wickner R.B. 2005. Prion domains: Sequences, structures and interactions. Nat. Cell. Biol. 7, 1039–1044.

    Article  CAS  PubMed  Google Scholar 

  41. Ashe K.H., Aguzzi A. 2013. Prions, prionoids and pathogenic proteins in Alzheimer disease. Prion. 7 (1), 55–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Prusiner S.B. 1982. Novel proteinaceous infectious particles cause scrapie. Science. 216, 136–144.

    Article  CAS  PubMed  Google Scholar 

  43. Weissmann C., Enari M., Klohn P.C., Rossi D., Flechsig E. 2002. Transmission of prions. Proc. Natl. Acad. Sci. U.S. A. 99 (Suppl. 4), 16378–16383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Irwin D.J., Abrams J.Y., Schonberger L.B., Leschek E.W., Mills J.L., Lee V.M., Trojanowski J.Q. 2013. Evaluation of potential infectivity of Alzheimer and Parkinson disease proteins in recipients of cadaver-derived human growth hormone. JAMA Neurol. 70, 462–468.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Duran-Aniotz C., Morales R., Moreno-Gonzalez I., Hu P.P., Soto C. 2013. Brains from non-Alzheimer’s individuals containing amyloid deposits accelerate Aβ deposition in vivo. Acta Neuropathol. Commun. 18, 1–11.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Schwarzman.

Additional information

Original Russian Text © A.L. Schwarzman, S.V. Sarantseva, 2017, published in Molekulyarnaya Biologiya, 2017, Vol. 51, No. 3, pp. 418–422.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schwarzman, A.L., Sarantseva, S.V. Transmission of pathogenic protein aggregates in Alzheimer’s disease. Mol Biol 51, 368–371 (2017). https://doi.org/10.1134/S0026893317030141

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893317030141

Keywords

Navigation