Skip to main content
Log in

Comparative analysis of the synchronization methods of normal and transformed human cells

  • Molecular Cell Biology
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Reactions of genetically identical cells to various exogenous and endogenous stimuli can vary significantly. One of the main factors of this non-genetic cellular heterogeneity is the cell cycle. The most convenient way to study the subcellular processes depending on the cell cycle stage is the synchronization of the cells. Toxic inhibitors of DNA replication and/or mitotic spindle assembly are typically used to synchronize cells. It is important to accurately select the synchronization method for a particular experiment. In this study, we performed a comparative analysis of the synchronization methods of normal and transformed human cells, paying special attention to the accuracy of synchronization and toxicity of the methods used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Niepel M., Spencer S.L., Sorger P.K. 2009. Nongenetic cell-to-cell variability and the consequences for pharmacology. Curr. Opin. Chem. Biol. 13, 556–561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Loewer A., Lahav G. 2011. We are all individuals: Causes and consequences of non-genetic heterogeneity in mammalian cells. Curr. Opin. Genet. Dev. 21, 753–758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Loewer A., Batchelor E., Gaglia G., Lahav G. 2010. Basal dynamics of p53 reveal transcriptionally attenuated pulses in cycling cells. Cell. 142, 89–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Velichko A.K., Petrova N.V., Kantidze O.L., Razin S.V. 2012. Dual effect of heat shock on DNA replication and genome integrity. Mol. Biol. Cell. 23, 3450–3460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Velichko A.K., Petrova N.V., Razin S.V., Kantidze O.L. 2015. Mechanism of heat stress-induced cellular senescence elucidates the exclusive vulnerability of early S-phase cells to mild genotoxic stress. Nucleic Acids Res. 43, 6309–6320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Roukos V., Pegoraro G., Voss T.C., Misteli T. 2015. Cell cycle staging of individual cells by fluorescence microscopy. Nat. Protoc. 10, 334–348.

    Article  PubMed  Google Scholar 

  7. Gut G., Tadmor M.D., Pe’er D., Pelkmans L., Liberali P. 2015. Trajectories of cell-cycle progression from fixed cell populations. Nat. Methods. 12, 951–954.

    Article  CAS  PubMed  Google Scholar 

  8. Darzynkiewicz Z., Halicka H.D., Zhao H., Podhorecka M. 2011. Cell synchronization by inhibitors of DNA replication induces replication stress and DNA damage response: Analysis by flow cytometry. Methods Mol. Biol. 761, 85–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kubota S., Fukumoto Y., Ishibashi K., Soeda S., Kubota S., Yuki R., Nakayama Y., Aoyama K., Yamaguchi N., Yamaguchi N. 2014. Activation of the prereplication complex is blocked by mimosine through reactive oxygen species-activated ataxia telangiectasia mutated (ATM) protein without DNA damage. J. Biol. Chem. 289, 5730–5746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Szuts D., Kitching L., Christov C., Budd A., Peak-Chew S., Krude T. 2003. RPA is an initiation factor for human chromosomal DNA replication. Nucleic Acids Res. 31, 1725–1734.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Adachi Y., Laemmli U.K. 1992. Identification of nuclear pre-replication centers poised for DNA synthesis in Xenopus egg extracts: Immunolocalization study of replication protein A. J. Cell Biol. 119, 1–15.

    Article  CAS  PubMed  Google Scholar 

  12. Wei X., Samarabandu J., Devdhar R.S., Siegel A.J., Acharya R., Berezney R. 1998. Segregation of transcription and replication sites into higher order domains. Science. 281, 1502–1506.

    Article  CAS  PubMed  Google Scholar 

  13. Jackson D., Wang X., Rudner D.Z. 2012. Spatio-temporal organization of replication in bacteria and eukaryotes (nucleoids and nuclei). Cold Spring Harb. Perspect. Biol. 4, a010389.

    PubMed  PubMed Central  Google Scholar 

  14. Petrova N.V., Velichko A.K., Razin S.V., Kantidze O.L. 2016. Early S-phase cell hypersensitivity to heat stress. Cell Cycle. 15, 337–344.

    Article  CAS  PubMed  Google Scholar 

  15. Kurose A., Tanaka T., Huang X., Traganos F., Dai W., Darzynkiewicz Z. 2006. Effects of hydroxyurea and aphidicolin on phosphorylation of ataxia telangiectasia mutated on Ser 1981 and histone H2AX on Ser 139 in relation to cell cycle phase and induction of apoptosis. Cytometry A. 69, 212–221.

    Article  PubMed  Google Scholar 

  16. Kurose A., Tanaka T., Huang X., Traganos F., Darzynkiewicz Z. 2006. Synchronization in the cell cycle by inhibitors of DNA replication induces histone H2AX phosphorylation: An indication of DNA damage. Cell Prolif. 39, 231–240.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Razin.

Additional information

Original Russian Text © A.K. Velichko, N.V. Petrova, S.V. Razin, O.L. Kantidze, 2017, published in Molekulyarnaya Biologiya, 2017, Vol. 51, No. 1, pp. 150–156.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velichko, A.K., Petrova, N.V., Razin, S.V. et al. Comparative analysis of the synchronization methods of normal and transformed human cells. Mol Biol 51, 130–135 (2017). https://doi.org/10.1134/S0026893316060200

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893316060200

Keywords

Navigation