Skip to main content
Log in

Web server for prediction of miRNAs and their precursors and binding sites

  • Bioinformatics
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

A microRNA (miRNA) is a small noncoding RNA molecule about 22 nucleotides in length. The paper describes a web server for predicting miRNAs and their precursors and binding sites. The predictions are based on either sequence similarity to known miRNAs of 223 organisms or context-structural hidden Markov models. It has been shown that the proposed methods of prediction of human miRNAs and pre-miRNAs outperform the existing ones in accuracy. The average deviation of predicted 5'-ends of human miRNAs from actual positions is 3.13 nt in the case of predicting one pair of complementary miRNAs (miRNA–miRNA* duplex). A useful option for our application is the prediction of an additional miRNA pair. In this mode, the pairs closest to actual miRNA deviate by 1.61 nt on average. The proposed method also shows good performance in predicting mouse miRNAs. Binding sites for miRNAs are predicted by two known approaches based on complementarity and thermodynamic stability of the miRNA–mRNA duplex and on a new approach, which takes into account miRNAs competition for the site. The role of the secondary structure in miRNA processing is considered. The web server is available at http://wwwmgs.bionet.nsc.ru/mgs/programs/rnaanalys/.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

SNP:

single-nucleotide polymorphism

nt:

nucleotide

References

  1. Bartel D.P. 2004. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell. 116, 281–297.

    Article  CAS  PubMed  Google Scholar 

  2. Lawrie C.H. 2014. MicroRNAs in Medicine. New Jersey: Wiley.

    Google Scholar 

  3. Griffiths-Jones S., Bateman A., Marshall M., Khanna A., Eddy S.R. 2003. Rfam: An RNA family database. Nucleic Acids Res. 31, 439–441.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Weber M.J. 2005. New human and mouse microRNA genes found by homology search. FEBS J. 272, 59–73.

    Article  CAS  PubMed  Google Scholar 

  5. Lim L.P., Lau N.C., Weinstein E.G., Abdelhakim A., Yekta S., Rhoades M.W., Burge C.B., Bartel D.P. 2003. The microRNAs of Caenorhabditis elegans. Genes Dev. 17, 991–1008.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Lai E.C., Tomancak P., Williams R.W., Rubin G.M. 2003. Computational identification of Drosophila microRNA genes. Genome Biol. 4, R42.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Wang X., Zhang J., Li F., Gu J., He T., Zhang X., Li Y. 2005. MicroRNA identification based on sequence and structure alignment. Bioinformatics. 21, 3610–3614.

    Article  CAS  PubMed  Google Scholar 

  8. Grundhoff A., Sullivan C.S., Ganem D. 2006. A combined computational and microarray-based approach identifies novel microRNAs encoded by human gamma-herpes viruses. RNA. 12, 733–750.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Wu Y., Wei B., Liu H., Li T., Rayner S. 2011. MiRPara: A SVM-based software tool for prediction of most probable microRNA coding regions in genome scale sequences. BMC Bioinform. 12, 107.

    Article  CAS  Google Scholar 

  10. Tempel S., Tahi F. 2012. A fast ab-initio method for predicting miRNA precursors in genomes. Nucleic Acids Res. 40, e80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Sewer A., Paul N., Landgraf P., Aravin A., Pfeffer S., Brownstein M., Tuschl T., Nimwegen E., Zavolan M. 2005. Identification of clustered microRNAs using an ab initio prediction method. BMC Bioinform. 6, 267.

    Article  Google Scholar 

  12. Xue C., Li A., He E., Liu P., Li Y., Zhang X. 2005. Classification of real and pseudo microRNA precursors using local structure-sequence features and support vector machine. BMC Bioinform. 6, 310.

    Article  Google Scholar 

  13. Hertel J., Stadler P.F. 2006. Hairpins in a Haystack: Recognizing microRNA precursors in comparative genomics data. Bioinformatics. 22, e197–e202.

    Article  CAS  PubMed  Google Scholar 

  14. Huang T.H., Fan B., Rothschild M.F., Hu Z.L., Li K. 2007. MiRFinder: An improved approach and software implementation for genome-wide fast microRNA precursor scans. BMC Bioinform. 8, 341.

    Article  Google Scholar 

  15. Batuwita R., Palade V. 2009. MicroPred: Effective classification of pre-miRNAs for human miRNA gene prediction. Bioinformatics. 25, 989–995.

    Article  CAS  PubMed  Google Scholar 

  16. Kumar S., Ansari F.A., Scaria V. 2009. Prediction of viral microRNA precursors based on human microRNA precursor sequence and structural features. Virol. J. 6, 129.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Xuan P., Guo M., Huang Y., Li W., Huang Y. 2011. Mature Pred: Efficient identification of microRNAs within novel plant pre-miRNAs. PLOS ONE. 6, e27422.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. He C., Li Y.X., Zhang G., Gu Z., Yang R., Li J., Wang J. 2012. MiRmat: Mature microRNA sequence prediction. PLOS ONE. 7, e51673.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Yousef M., Nebozhyn M., Shatkay H., Kanterakis S., Showe L.C. 2006. Combining multi-species genomic data for microRNA identification using a Naive Bayes classifier. Bioinformatics. 22, 1325–1334.

    Article  CAS  PubMed  Google Scholar 

  20. Gkirtzou K., Tsamardinos I., Tsakalides P., Poirazi P. 2010. MatureBayes: A Probabilistic algorithm for identifying the mature miRNA within novel precursors. PLOS ONE. 5, e11843.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Tyagi S., Vaz C., Gupta V., Bhatia R., Maheshwari S., Srinivasan A., Bhattacharya A. 2008. CID-miRNA: A web server for prediction of novel miRNA precursors in human genome. Biochem. Biophys. Res. Comm. 372, 831–834.

    Article  CAS  PubMed  Google Scholar 

  22. Nam J.W., Shin K.R., Han J., Lee Y., Kim V.N., Zhang B.T. 2005. Human microRNA prediction through a probabilistic co-learning model of sequence and structure. Nucleic Acids Res. 33, 3570–3581.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Terai G., Komori T., Asai K., Kin T. 2007. MiRRim: A novel system to find conserved miRNAs with high sensitivity and specificity. RNA. 13, 2081–2090.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Oulas A., Boutla A., Gkirtzou K., Reczko M., Kalantidis K., Poirazi P. 2009. Prediction of novel microRNA genes in cancer-associated genomic regions: A combined computational and experimental approach. Nucleic Acids Res. 37, 3276–3287.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Stark A., Brennecke J., Russell R.B., Cohen S.M. 2003. Identification of Drosophila microRNA targets. PLoS Biol. 1, E60.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Kiriakidou M., Nelson P.T., Kouranov A., Fitziev P., Bouyioukos C., Mourelatos Z., Hatzigeorgiou A. 2004. A combined computational-experimental approach predicts human microRNA targets. Genes Dev. 18, 1165–1178.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Rehmsmeier M., Steffen P., Hochsmann M., Giegerich R. 2004. Fast and effective prediction of microRNA/target duplexes. RNA. 10, 1507–1517.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Maziere P., Enright A.J. 2007. Prediction of microRNA targets. Drug Discov. Today. 12, 452–458.

    Article  CAS  PubMed  Google Scholar 

  29. Enright A.J., John B., Gaul U., Tuschl T., Sander C., Marks, D. S. 2003. MicroRNA targets in Drosophila. Genome Biol. 5, R1.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Lewis B.P., Burge C.B., Bartel D.P. 2004. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 120, 15–20.

    Article  Google Scholar 

  31. Brennecke J., Stark A., Russell R.B., Cohen S.M. 2005. Principles of microRNA-target recognition. PLoS Biol. 3, e85.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Bartel D.P. 2009. MicroRNAs: Target recognition and regulatory functions. Cell. 136, 215–233.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Kim S.K., Nam J.W., Rhee J.K., Lee W.J., Zhang B.T. 2006. MiTarget: MicroRNA target gene prediction using a support vector machine. BMC Bioinform. 7, 411.

    Article  Google Scholar 

  34. Wang X., El Naqa I.M. 2008. Prediction of both conserved and non-conserved microRNA targets in animals. Bioinformatics. 24, 325–332.

    Article  PubMed  Google Scholar 

  35. Reyes-Herrera P.H., Ficarra E., Acquaviva A., Macii E. 2011. MiREE: miRNA recognition elements ensemble. BMC Bioinform. 12, 454.

    Article  Google Scholar 

  36. Ragan C., Zuker M., Ragan M.A. 2011. Quantitative prediction of miRNA–mRNA interaction based on equilibrium concentrations. PLoS Comp. Biol. 7, e1001090.

    Article  CAS  Google Scholar 

  37. Betel D., Wilson M., Gabow A., Marks D.S., Sander C. 2008. The microRNA.org resource: Targets and expression. Nucleic Acids Res. 36, D149–D153.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Maragkakis M., Reczko M., Simossis V.A., Alexiou P., Papadopoulos G.L., Dalamagas T., Hatzigeorgiou A.G. 2009. DIANA-microT web server: Elucidating microRNA functions through target prediction. Nucleic Acids Res. 37, W273–W276.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Dweep H., Sticht C., Pandey P., Gretz N. 2011. MiRWalk database: Prediction of possible miRNA binding sites by “walking” the genes of three genomes. J. Biomed. Inform. 44, 839–847.

    Article  CAS  PubMed  Google Scholar 

  40. Kozomara A., Griffiths-Jones S. 2011. MiRBase: Integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 39, D152–D157.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Yang J.H., Li J.H., Shao P., Zhou H., Chen Y.Q., Qu L.H. 2011. StarBase: A database for exploring microRNA–mRNA interaction maps from Argonaute CLIP-Seq and Degradome-Seq data. Nucleic Acids Res. 39, D202–D209.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Titov, I.I. Vorob’ev, D.G., Ivanisenko V.A., Kolchanov N.A. 2002. A rapid genetic algorithm for analyzing RNA secondary structure. Izv. Akad. Nauk, Ser. Khim. 7, 1047–1056.

    Google Scholar 

  43. Griffiths-Jones S., Grocock R.J., van Dongen S., Bateman A., Enright A.J. 2006. MiRBase: MicroRNAsequences, targetsandgene nomenclature. Nucleic Acids Res. 34, D140–D144.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Kozomara A., Griffiths-Jones S. 2014. miRBase: Annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 42, D68–D73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Titov I.I., Vorozheykin P.S. 2011. miRNA-containing human transposable elements. Vavilov. Zh. Genet. Selekts. 15, 323–326.

    Google Scholar 

  46. Titov I.I., Vorozheykin P.S. 2011. Analysis of miRNA gene duplication in the human genome and the role of transposable element evolution in this process. Vavilov. Zh. Genet. Selekts. 15, 139–147.

    Google Scholar 

  47. Lee Y., Jeon K., Lee J.T., Kim S., Kim V.N. 2002. MicroRNA maturation: Stepwise processing and subcellular localization. EMBO J. 21, 4663–4670.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Lee Y., Kim M., Han J., Yeom K.H., Lee S., Baek S.H., Kim V.N. 2004. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23, 4051–4060.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Winter J., Jung S., Keller S., Gregory R.I., Diederichs S. 2009. Many roads to maturity: MicroRNA biogenesis pathways and their regulation. Nat. Cell Biol. 11, 228–234.

    Article  CAS  PubMed  Google Scholar 

  50. Zisoulis D.G., Kai Z.S., Chang R.K., Pasquinelli A.E. 2012. Autoregulation of microRNA biogenesis by let-7 and Argonaute. Nature. 486, 541–544.

    PubMed Central  CAS  PubMed  Google Scholar 

  51. Tang R., Li L., Zhu D., Hou D., Cao T., Gu H., Zen K. 2012. Mouse miRNA-709 directly regulates miRNA15a/16-1 biogenesis at the posttranscriptional level in the nucleus: Evidence for a microRNA hierarchy system. Cell Res. 22, 504–515.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Libri V., Miesen P., van Rij R.P., Buck A.H. 2013. Regulation of microRNA biogenesis and turnover by animals and their viruses. Cell. Mol. Life Sci. 70, 3525–3544.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Michlewski G., Guil S., Semple C.A., Cáceres J.F. 2008. Posttranscriptional regulation of miRNAs harboring conserved terminal loops. Mol. Cell. 32, 383–393.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Lee Y., Ahn C., Han J., Choi H., Kim J., Yim J., Kim V.N. 2003. The nuclear RNase III Drosha initiates microRNA processing. Nature. 425, 415–419.

    Article  CAS  PubMed  Google Scholar 

  55. Okada C., Yamashita E., Lee S.J., Shibata S., Katahira J., Nakagawa A., Tsukihara T. 2009. A high-resolution structure of the pre-microRNA nuclear export machinery. Science. 326, 1275–1279.

    Article  CAS  PubMed  Google Scholar 

  56. Ruby J.G., Jan C.H., Bartel D.P. 2007. Intronic microRNA precursors that bypass Drosha processing. Nature. 448, 83–86.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Newman M.A., Mani V., Hammond S.M. 2011. Deep sequencing of microRNA precursors reveals extensive 3' end modification. RNA. 17, 1795–1803.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Xia H., Li F., He T., Li Y. 2005. Distribution of mature microRNA on its precursor: A new character for microRNA prediction. Int. J. Inform. Tech. 11, 1–8.

    Google Scholar 

  59. Förstemann K., Horwich M.D., Wee L., Tomari Y., Zamore P.D. 2007. Drosophila microRNAs are sorted into functionally distinct Argonaute complexes after production by Dicer-1. Cell. 130, 287–297.

    Article  PubMed Central  PubMed  Google Scholar 

  60. Khvorova A., Reynolds A., Jayasena S.D. 2003. Functional siRNAs and miRNAs exhibit strand bias. Cell. 115, 209–216.

    Article  CAS  PubMed  Google Scholar 

  61. Starega-Roslan J., Krol J., Koscianska E., Kozlowski P., Szlachcic W.J., Sobczak K., Krzyzosiak W.J. 2011. Structural basis of microRNA length variety. Nucleic Acids Res. 39, 257–268.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Czech B., Hannon G.J. 2011. Small RNA sorting: Matchmaking for Argonautes. Nat. Rev. Genet. 12, 19–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Cifuentes D., Xue H., Taylor D.W., Patnode H., Mishima Y., Cheloufi S., Giraldez A.J. 2010. A novel miRNA processing pathway independent of Dicer requires Argonaute 2 catalytic activity. Science. 328, 1694–1698.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Yang J.S., Maurin T., Lai E.C. 2012. Functional parameters of Dicer-independent microRNA biogenesis. RNA. 18, 945–957.

    Article  PubMed Central  PubMed  Google Scholar 

  65. Wheeler B.M., Heimberg A.M., Moy V.N., Sperling E.A., Holstein T.W., Heber S., Peterson K.J. 2009. The deep evolution of metazoan microRNAs. Evol. Dev. 11, 50–68.

    Article  CAS  PubMed  Google Scholar 

  66. Gong J., Tong Y., Zhang H.M., Wang K., Hu T., Shan G., Guo A.Y. 2012. Genome-wide identification of SNPs in microRNA genes and the SNP effects on microRNA target binding and biogenesis. Hum. Mutat. 33, 254–263.

    Article  CAS  PubMed  Google Scholar 

  67. Jin Y., Lee C.G. 2013. Single nucleotide polymorphisms associated with microRNA regulation. Biomolecules. 3, 287–302.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Berezikov E. 2011. Evolution of microRNA diversity and regulation in animals. Nat. Rev. Genet. 12, 846–860.

    Article  CAS  PubMed  Google Scholar 

  69. Krol J., Sobczak K. 2004. Structural features of microRNA (miRNA) precursors and their relevance to miRNA biogenesis and small interfering RNA/short hairpin RNA design. J. Biol. Chem. 279, 42230–42239.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Titov.

Additional information

Original Russian Text © P.S. Vorozheykin, I.I. Titov, 2015, published in Molekulyarnaya Biologiya, 2015, Vol. 49, No. 5, pp. 846–853.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vorozheykin, P.S., Titov, I.I. Web server for prediction of miRNAs and their precursors and binding sites. Mol Biol 49, 755–761 (2015). https://doi.org/10.1134/S0026893315050192

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893315050192

Keywords

Navigation