Skip to main content
Log in

Identification of Saccharomyces cerevisiae genes leading to synthetic lethality of prion [PSI +] with SUP45 mutations

  • Genomics. Transcriptomics
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Previously, we proposed a test system that allows one to search for genes that influence the properties of Sup35 and Sup45 proteins. This test is based on the phenomenon of the lethality of diploids that combine mutations in the SUP45 gene with [PSI +] prion. The lethality of this combination depends on both the type of sup45 mutation and the properties of the prion. The [PSI +] variant, which is a strong suppressor ([PSI +]S), causes synthetic lethality with all the nonsense mutations and some missense sup45 mutations in the heterozygote state. The presence of extra copies of the tested gene, which affects the phenotypic manifestation of the prion [PSI +] or properties of the termination factors of translation leads to a increase or decrease in diploid lethality. The screening of the gene library using this test system allowed us to establish the effect of ten fragments of genomic DNA of yeast on synthetic lethality. The deletion analysis of these regions has led to the identification of the HLJ1 and TEF2 genes, which affects the prionization of the Sup35 protein and/or the efficiency of translation termination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhouravleva G., Frolova L., Le Goff X., Le Guellec R., Inge-Vechtomov S., Kisselev L., Philippe M. 1995. Termination of translation in eukaryotes is governed by two interacting polypeptide chain release factors, eRF1 and eRF3. EMBO J. 14, 4065–4072.

    PubMed  CAS  Google Scholar 

  2. Stansfield I., Jones K.M., Kushnirov V.V., Dagkesamanskaya A.R., Poznyakovski A.I., Paushkin S.V., Nierras C.B., Cox B.S., Ter-Avanesyan M.D., Tuite M.F. 1995. The products of the SUP45 (eRF1) and SUP35 genes interact to mediate translation termination in Saccharomyces cerevisiae. EMBO J. 14, 4365–4373.

    PubMed  CAS  Google Scholar 

  3. Patino M.M., Liu J.J., Glover J.R., Lindquist S. 1996. Support for the prion hypothesis for inheritance of a phenotypic trait in yeast. Science. 273, 622–626.

    Article  PubMed  CAS  Google Scholar 

  4. Paushkin S.V., Kushnirov V.V., Smirnov V.N., Ter-Avanesyan M.D. 1996. Propagation of the yeast prionlike [psi +] determinant is mediated by oligomerization of the SUP35-encoded polypeptide chain release factor. EMBO J. 15, 3127–3134.

    PubMed  CAS  Google Scholar 

  5. Cox B.S. 1965. PSI+, a cytoplasmic suppressor of supersuppressor in yeast. Heredity. 20, 505–521.

    Article  Google Scholar 

  6. Liebman S.W., Sherman F. 1979. Extrachromosomal psi+ determinant suppresses nonsense mutations in yeast. J. Bacteriol. 139, 1068–1071.

    PubMed  CAS  Google Scholar 

  7. Alberti S., Halfmann R., King O., Kapila A., Lindquist S. 2009. A systematic survey identifies prions and illuminates sequence features of prionogenic proteins. Cell. 137, 146–158.

    Article  PubMed  CAS  Google Scholar 

  8. Tuite M.F., Cox B.S. 2007. The genetic control of the formation and propagation of the [PSI+] prion of yeast. Prion. 1, 101–109.

    Article  PubMed  Google Scholar 

  9. Derkatch I.L., Chernoff Y.O., Kushnirov V.V., Inge-Vechtomov S.G., Liebman S.W. 1996. Genesis and variability of [PSI] prion factors in Saccharomyces cerevisiae. Genetics. 144, 1375–1386.

    PubMed  CAS  Google Scholar 

  10. Tuite M.F., Mundy C.R., Cox B.S. 1981. Agents that cause a high frequency of genetic change from [psi +] to [psi ] in Saccharomyces cerevisiae. Genetics. 98, 691–711.

    PubMed  CAS  Google Scholar 

  11. Cox B.S., Tuite M.F., McLaughlin C.S. 1988. The psi factor of yeast: A problem in inheritance. Yeast. 4, 59–178.

    Article  Google Scholar 

  12. Kiktev D., Inge-Vechtomov S.G., Zhouravleva G. 2007. Prion-dependent lethality of sup45 mutants in Saccharomyces cerevisiae. Prion. 1, 136–143.

    Article  PubMed  Google Scholar 

  13. Chernoff Y.O., Lindquist S.L., Ono B., Inge-Vechtomov S.G., Liebman S.W. 1995. Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [psi+]. Science. 268, 880–884.

    Article  PubMed  CAS  Google Scholar 

  14. Chernoff Y.O., Newnam G.P., Kumar J., Allen K., Zink A.D. 1999. Evidence for a protein mutator in yeast: role of the Hsp70-related chaperone ssb in formation, stability, and toxicity of the [PSI] prion. Mol. Cell. Biol. 19, 8103–8112.

    PubMed  CAS  Google Scholar 

  15. Newnam G.P., Wegrzyn R.D., Lindquist S.L., Chernoff Y.O. 1999. Antagonistic interactions between yeast chaperones Hsp104 and Hsp70 in prion curing. Mol. Cell. Biol. 19, 1325–1333.

    PubMed  CAS  Google Scholar 

  16. Kryndushkin D.S., Smirnov V.N., Ter-Avanesyan M.D., Kushnirov V.V. 2002. Increased expression of Hsp40 chaperones, transcriptional factors and ribosomal protein Rpp0 can cure yeast prions. J. Biol. Chem. 277, 23702–23708.

    Article  PubMed  CAS  Google Scholar 

  17. Liebman S.W., All-Robyn J.A. 1984. A non-mendelian factor, [eta +], causes lethality of yeast omnipotent-suppressor strains. Curr. Genet. 8, 567–573.

    Article  CAS  Google Scholar 

  18. All-Robyn J.A., Kelley-Geraghty D., Griffin E., Brown N., Liebman S.W. 1990. Isolation of omnipotent suppressors in an [eta +] yeast strain. Genetics. 124, 505–514.

    PubMed  CAS  Google Scholar 

  19. Tikhodeev O.N., Getmanova E.V., Tikhomirova V.L., Inge-Vechtomov S.G. 1990. Ambiguity of translation in yeast: Genetic control and modifications. In: Molekulyarnye mekhanizmy geneticheskikh protsessov (Molecular Mechanisms of Genetic Processes). Moscow: Nauka, pp. 218–228.

    Google Scholar 

  20. Kiktev D.A., Chernov Yu.O., Arkhipenko A.V., Zhuravleva G.A. 2011. Identification of genes influencing synthetic lethality of genetic and epigenetic changes in translation termination factors in yeasr. Doklady Akad. Nauk. 438, 416–418.

    Google Scholar 

  21. Sambrook J., Fritsch E.F., Maniatis T. 1989. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Lab. Press.

    Google Scholar 

  22. Moskalenko S.E., Chabelskaya S.V., Inge-Vechtomov S.G., Philippe M., Zhouravleva G.A. 2003. Viable nonsense mutants for the essential gene SUP45 of Saccharomyces cerevisiae. BMC Mol. Biol. 4, 2.

    Article  PubMed  Google Scholar 

  23. Moskalenko S.E., Zhuravleva G.A., Soom M.I., Shabel’skaya S.V., Volkov K.V., Zemlyanko O.M., Filipp M., Mironova L.N., Inge-Vechtomov S.G. 2004. Characterization of missense mutations in the SUP45 gene of Saccharomyces cerevisiae encoding translation termination factor eRF1. Russ. J. Genet. 40, 478–484.

    Article  CAS  Google Scholar 

  24. Sikorski R.S., Hieter P. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics. 122, 19–27.

    PubMed  CAS  Google Scholar 

  25. Rubel’ A.A., Korzhova V.V., Saifitdinova A.F., Antonets K.S., Inge-Vechtomov S.G., Galkin A.P. 2012. The PrP protein and amyloid beta interact in yeast Saccharomyces cerevisiae. Ekol. Genet. 10, 74–80.

    Google Scholar 

  26. Valouev I.A., Fominov G.V., Sokolova E.E., Smirnov V.N., Ter-Avanesyan M.D. 2009. Elongation factor eEF1B modulates functions of the release factors eRF1 and eRF3 and the efficiency of translation termination in yeast. BMC Mol. Biol. 10, 60.

    Article  PubMed  Google Scholar 

  27. Guthrie C., Fink G.R. 1991. Guide to Yeast Genetics and Molecular Biology. San Diego: Academic Press.

    Google Scholar 

  28. Rose M.D., Winston F.M., Hieter P., Sherman F. 1990. Methods in Yeast Genetics: A Laboratory Course Manual. Cold Spring Harbor, NY: Cold Spring Harbor Lab. Press.

    Google Scholar 

  29. Kaiser C., Michaelis S., Mitchell A. 1994. Methods in Yeast Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Lab. Press.

    Google Scholar 

  30. Gietz R.D., Schiestl R.H., Willems A.R., Woods R.A. 1995. Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast. 11, 355–360.

    Article  PubMed  CAS  Google Scholar 

  31. Elble R., Tye B.K. 1991. Both activation and repression of a-mating-type-specific genes in yeast require transcription factor Mcm1. Proc. Natl. Acad. Sci. U. S. A. 88, 10966–10970.

    Article  PubMed  CAS  Google Scholar 

  32. Bruhn L., Hwang-Shum J.J., Sprague G.F., Jr. 1992. The N-terminal 96 residues of MCM1, a regulator of cell type-specific genes in Saccharomyces cerevisiae, are sufficient for DNA binding, transcription activation, and interaction with alpha 1. Mol. Cell. Biol. 12, 3563–3572.

    PubMed  CAS  Google Scholar 

  33. Michelitsch M.D., Weissman J.S. 2000. A census of glutamine/asparagine-rich regions: Implications for their conserved function and the prediction of novel prions. Proc. Natl. Acad. Sci. U. S. A. 97, 11910–11915.

    Article  PubMed  CAS  Google Scholar 

  34. Valente L., Kinzy T.G. 2003. Yeast as a sensor of factors affecting the accuracy of protein synthesis. Cell. Mol. Life Sci. 60, 2115–2130.

    Article  PubMed  CAS  Google Scholar 

  35. Szabo A., Langer T., Schroder H., Flanagan J., Bukau B., Hartl F.U. 1994. The ATP hydrolysis-dependent reaction cycle of the Escherichia coli Hsp70 system DnaK, DnaJ, and GrpE. Proc. Natl. Acad. Sci. U. S. A. 91, 10345–10349.

    Article  PubMed  CAS  Google Scholar 

  36. Cyr D.M., Lu X., Douglas M.G. 1992. Regulation of Hsp70 function by an eukaryotic DnaJ homolog. J. Biol. Chem. 267, 20927–20931.

    PubMed  CAS  Google Scholar 

  37. Langer T., Lu C., Echols H., Flanagan J., Hayer M.K., Hartl F.U. 1992. Successive action of DnaK, DnaJ and GroEL along the pathway of chaperone-mediated protein folding. Nature. 356, 683–689.

    Article  PubMed  CAS  Google Scholar 

  38. Qiu X.B., Shao Y.M., Miao S., Wang L. 2006. The diversity of the DnaJ/Hsp40 family, the crucial partners for Hsp70 chaperones. Cell. Mol. Life Sci. 63, 2560–2570.

    Article  PubMed  CAS  Google Scholar 

  39. Huyer G., Piluek W.F., Fansler Z., Kreft S.G., Hochstrasser M., Brodsky J.L., Michaelis S. 2004. Distinct machinery is required in Saccharomyces cerevisiae for the endoplasmic reticulum-associated degradation of a multispanning membrane protein and a soluble luminal protein. J. Biol. Chem. 279, 38369–38378.

    Article  PubMed  CAS  Google Scholar 

  40. Mead J., Bruning A.R., Gill M.K., Steiner A.M., Acton T.B., Vershon A.K. 2002. Interactions of the Mcm1 MADS box protein with cofactors that regulate mating in yeast. Mol. Cell. Biol. 22, 4607–4621.

    Article  PubMed  CAS  Google Scholar 

  41. Christ C., Tye B.K. 1991. Functional domains of the yeast transcription/replication factor MCM1. Genes Dev. 5, 751–763.

    Article  PubMed  CAS  Google Scholar 

  42. Meriin A.B., Zhang X., He X., Newnam G.P., Chernoff Y.O., Sherman M.Y. 2002. Huntington toxicity in yeast model depends on polyglutamine aggregation mediated by a prion-like protein Rnq1. J. Cell Biol. 157, 997–1004.

    Article  PubMed  CAS  Google Scholar 

  43. Carr-Schmid A., Valente L., Loik V.I., Williams T., Starita L.M., Kinzy T.G. 1999. Mutations in elongation factor 1beta, a guanine nucleotide exchange factor, enhance translational fidelity. Mol. Cell. Biol. 19, 5257–5266.

    PubMed  CAS  Google Scholar 

  44. Beier H., Grimm M. 2001. Misreading of termination codons in eukaryotes by natural nonsense suppressor tRNAs. Nucleic Acids Res. 29, 4767–4782.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Zhouravleva.

Additional information

Original Russian Text © A.G. Matveenko, O.M. Zemlyanko, G.A. Zhouravleva, 2013, published in Molekulyarnaya Biologiya, 2013, Vol. 47, No. 4, pp. 609–617.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matveenko, A.G., Zemlyanko, O.M. & Zhouravleva, G.A. Identification of Saccharomyces cerevisiae genes leading to synthetic lethality of prion [PSI +] with SUP45 mutations. Mol Biol 47, 530–537 (2013). https://doi.org/10.1134/S0026893313040110

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893313040110

Keywords

Navigation