Skip to main content
Log in

Improved procedure of the search for poly(ADP-Ribose) polymerase-1 potential inhibitors with the use of the molecular docking approach

  • Structrural-Functional Analysis of Biopolymers and Their Complexes
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

A search for poly(ADP-ribose) polymerase-1 inhibitors by virtual screening of a chemical compound database and a subsequent experimental verification of their activities have been performed. It was shown that the most efficient method to predict inhibitory properties implies a combinatorial approach joining molecular docking capabilities with structural filtration. Among more than 300000 low molecular chemical compounds, 9 PARP1 inhibitors were revealed; the most active ones, namely, STK031481, STK056130, and STK265022, displayed biological effect at a micromolar concentration (IC50 = 2.0, 1.0, and 2.6 μM, respectively).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chambon P., Weill J.D., Mandel P. 1963. Nicotinamide mononucleotide activation of new DNA-dependent polyadenylic acid synthesizing nuclear enzyme. Biochem. Biophys. Res. Commun. 11, 39–43.

    Article  PubMed  CAS  Google Scholar 

  2. D’Amours D., Desnoyers S., D’silva I., Poirier G.G. 1999. Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem. J. 342, 249–268.

    Article  PubMed  Google Scholar 

  3. Caldecott K.W., Aoufouchi S., Johnson P., Shall S. 1996. XRCC1 polypeptide interacts with DNA polymerase beta and possibly poly (ADP-ribose) polymerase, and DNA ligase III is a novel molecular ‘nicksensor’ in vitro. Nucleic Acids Res. 24, 4387–4394.

    Article  PubMed  CAS  Google Scholar 

  4. Masson M., Niedergang C., Schreiber V., Muller S., Menissier-de Murcia J., de Murcia G. 1998. XRCC1 is specifically associated with poly(ADP-ribose) polymerase and negatively regulates its activity following DNA damage. Mol. Cell Biol. 18, 3563–3571.

    PubMed  CAS  Google Scholar 

  5. Godon C., Cordelieres F.P., Biard D., Giocanti N., Megnin-Chanet F., Hall J., Favaudon V. 2008. PARP inhibition versus PARP-1 silencing: Different outcomes in terms of single-strand break repair and radiation susceptibility. Nucleic Acids Res. 36, 4454–4464.

    Article  PubMed  CAS  Google Scholar 

  6. Sukhanova M.V., Lavrik O.I., Khodyreva S.N. 2004. Poly(ADP-ribose) polymerase-1: A regulator of protein-nucleic acid interactions in processes responding to genotoxic impact. Mol. Biol. (Moscow). 38, 706–717.

    Article  CAS  Google Scholar 

  7. Timinszky G., Till S., Hassa P.O., Hothorn M., Kustatscher G., Nijmeijer B., Colombelli J., Altmeyer M., Stelzer E.H., Scheffzek K., Hottiger M.O., Ladurner A.G. 2009. A macrodomain-containing histone rearranges chromatin upon sensing PARP1 activation. Nature Struct. Mol. Biol. 16, 923–929.

    Article  CAS  Google Scholar 

  8. Ahel D., Horejsi Z., Wiechens N., Polo S.E., Garcia-Wilson E., Ahel I., Flynn H., Skehel M., West S.C., Jackson S.P., Owen-Hughes T., Boulton S.J. 2009. Poly(ADP-ribose)-dependent regulation of DNA repair by the chromatin remodeling enzyme ALC1. Science. 325, 1240–1243.

    Article  PubMed  CAS  Google Scholar 

  9. Gottschalk A.J., Timinszky G., Kong S.E., Jin J., Cai Y., Swanson S.K., Washburn M.P., Florens L., Ladurner A.G., Conaway J.W., Conaway R.C. 2009. Poly(ADP-ribosyl)ation directs recruitment and activation of an ATP-dependent chromatin remodeler. Proc. Natl. Acad. Sci. U.S.A. 106, 13770–13774.

    Article  PubMed  CAS  Google Scholar 

  10. Gatti L., Zunino F. 2005. Overview of tumor cell chemoresistance mechanisms. Methods Mol. Med. 111, 127–148.

    PubMed  CAS  Google Scholar 

  11. Borst P., Rottenberg S., Jonkers J. 2008. How do real tumors become resistant to cisplatin? Cell Cycle. 7, 1353–1359.

    Article  PubMed  CAS  Google Scholar 

  12. Drew Y., Plummer, R. 2009. PARP inhibitors in cancer therapy: Two modes of attack on the cancer cell widening the clinical applications. Drug Resist. Update. 12, 153–156.

    Article  CAS  Google Scholar 

  13. Schreiber V., Dantzer. F., Ame J.C., de Murcia G. 2006. Poly(ADP-ribose): novel functions for an old molecule. Nature Rev. Mol. Cell Biol. 7, 517–528.

    Article  CAS  Google Scholar 

  14. White A.W., Almassy R., Calvert A.H., Curtin N.J., Griffin R.J., Hostomsky Z., Maegley K., Newell D.R., Srinivasan S., Golding B.T. 2000. Resistance-modifying agents: 9. Synthesis and biological properties of benzimidazole inhibitors of the DNA repair enzyme poly(ADP-ribose) polymerase. J. Med. Chem. 43, 4084–4097.

    Article  PubMed  CAS  Google Scholar 

  15. Stroganov O.V., Novikov F.N., Stroylov V.S., Kulkov V., Chilov G.G. 2008. Lead finder: An approach to improve accuracy of protein ligand docking, binding energy estimation, and virtual screening. J. Chem. Inf. Model. 48, 2371–2385.

    Article  PubMed  CAS  Google Scholar 

  16. STK library. 2007. Vitas-M Laboratory. http://www.vitasmlab.com/.

  17. Sukhanova M.V., Khodyreva S.N., Lavrik O.I. 2004. Poly(ADP-ribose) polymerase 1 inhibits strand-displacement DNA synthesis catalyzed by DNA polymerase β. Biochemistry (Moscow). 69, 686–698.

    Article  Google Scholar 

  18. Neubig R.R., Spedding M., Kenakin T., Christopoulos A. 2003. International Union of Pharmacology Committee on Receptor Nomenclature and Drug Classification. XXXVIII. Update on terms and symbols in quantitative pharmacology. Pharmacol. Rev. 55, 597–606

    Article  PubMed  CAS  Google Scholar 

  19. Kamanaka Y., Kondo K., Ikeda Y., Kamoshima W., Kitajima T., Suzuki Y., Nakamura Y., Umemura K. 2004. Neuroprotective effects of ONO-1924H, an inhibitor of poly ADP-ribose polymerase (PARP), on cytotoxicity of PC12 cells and ischemic cerebral damage. Life Sci. 76, 151–162.

    Article  PubMed  CAS  Google Scholar 

  20. Menear K.A., Adcock C., Boulter R., Cockcroft X.L., Copsey L., Cranston A., Dillon K.J., Drzewiecki J., Garman S., Gomez S., Javaid H., Kerrigan F., Knights C., Lau A., Loh V.M.Jr., Matthews I.T., Moore S., O’Connor M.J., Smith G.C., Martin N.M. 2008. 4-[3-(4-cyclopropanecarbonylpiperazine-1-carbonyl)-4-fluorobenzyl]-2H-phthalazin-1-one: A novel bioavailable inhibitor of poly(ADP-ribose) polymerase-1. J. Med. Chem. 51, 6581–6591.

    Article  PubMed  CAS  Google Scholar 

  21. Novikov F.N., Stroylov V.S., Stroganov O.V., Chilov G.G. 2010. Improving performance of docking-based virtual screening by structural filtration. J. Mol. Model. 16, 1223–1230.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. I. Lavrik.

Additional information

Original Russian Text © A.L. Zakharenko, M.V. Sukhanova, S.N. Khodyreva, F.N. Novikov, V.S. Stroylov, D.K. Nilov, G.G. Chilov, V.K. Svedas, O.I. Lavrik, 2011, published in Molekulyarnaya Biologiya, 2011, Vol. 45, No. 3, pp. 565–569.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zakharenko, A.L., Sukhanova, M.V., Khodyreva, S.N. et al. Improved procedure of the search for poly(ADP-Ribose) polymerase-1 potential inhibitors with the use of the molecular docking approach. Mol Biol 45, 517–521 (2011). https://doi.org/10.1134/S0026893311030228

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893311030228

Keywords

Navigation