Skip to main content
Log in

Mitochondrial mechanisms of apoptosis in response to DNA damage

  • Devoted the Memory of Lev L’vovich Kisselev
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Genome integrity is essential for cell viability, while damage to the DNA structure is a key factor inducing cell death. Among all cell death programs, those involving mitochondrial proteins are of particular importance. Activation of various protective epigenetic mechanisms in response to DNA damage prevents cell death. The outcome of genotoxic stress—cell death versus survival—depends on the balance of proapoptotic and antiapoptotic signaling. This concept provides a rational basis for improving the efficacy of anticancer therapy by combining DNA-damaging exposures with inhibition of antiapoptotic mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kang J., Ferguson D., Song H., et al. 2005. Functional interaction of H2AX, NBS1, and p53 in ATM-dependent DNA damage responses and tumor suppression. Mol. Cell Biol. 25, 661–670.

    Article  PubMed  CAS  Google Scholar 

  2. Gu W., Roeder R.G. 1997. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell. 90, 595–606.

    Article  PubMed  CAS  Google Scholar 

  3. Luo J., Li M., Tang Y., et al. 2004. Acetylation of p53 augments its site-specific DNA binding both in vitro and in vivo. Proc. Natl. Acad. Sci. USA. 101, 2259–2264.

    Article  PubMed  CAS  Google Scholar 

  4. Lambert P.F., Kashanchi F., Radonovich M.F., et al. 1998. Phosphorylation of p53 serine 15 increases interaction with CBP. J. Biol. Chem. 273, 33048–33053.

    Article  PubMed  CAS  Google Scholar 

  5. Kerr L.E., Birse-Archbold J.-L.A., Short D.M., et al. 2007. Nucleophosmin is a novel Bax chaperone that regulates apoptotic cell death. Oncogene. 26, 2554–2562.

    Article  PubMed  CAS  Google Scholar 

  6. Vieira H.L.A., Kroemer G. 1999. Pathophysiology of mitochondrial cell death control. Cell. Mol. Life Sci. 56, 971–976.

    Article  PubMed  CAS  Google Scholar 

  7. Tsujimoto Y. 2002. Bcl-2 Family of proteins: Life-or-death switch in mitochondria. Bioscience Rep. 22, 47–58.

    Article  CAS  Google Scholar 

  8. Borner C. 2003. The Bcl-2 protein family: Sensors and checkpoints for life-or-death decisions. Mol. Immunol. 39, 615–647.

    Article  PubMed  CAS  Google Scholar 

  9. Martinou J.-C., Green D. R. 2001. Breaking the mitochondrial barrier. Nature Rev. Mol. Cell Biol. 2, 63–67.

    Article  CAS  Google Scholar 

  10. Kuwana T., Mackey M.R., Perkins G., et al. 2002. Bid, bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell. 111, 331–342.

    Article  PubMed  CAS  Google Scholar 

  11. Cheng E., Wei M.C., Weiler S., et al. 2001. Bcl-2, Bcl-XL sequester BH3 domain-only molecules preventing Bax-and Bak-mediated mitochondrial apoptosis. Mol. Cell. 8, 705–711

    Article  PubMed  CAS  Google Scholar 

  12. Tobiume J.K. 2005. Involvement of Bcl-2 family proteins in p53-induced apoptosis. J. Nippon Med. School. 72, 192–193.

    Article  Google Scholar 

  13. Willis S., Day C.L., Hinds M.G., Huang D.C.S. 2003. The Bcl-2-regulated apoptotic pathway. J.Cell Sci. 116, 4053–4056.

    Article  PubMed  CAS  Google Scholar 

  14. Allena R.T., Cluckb M.W., Agrawal D.K. 1998. Mechanisms controlling cellular suicide: Role of Bcl-2 and caspases. Cell. Mol. Life Sci. 54, 427–445.

    Article  Google Scholar 

  15. Ohtsuka T., Ryu H., Minamishima Y.A., et al. 2004. ASC is a Bax adaptor and regulates the p53-Bax mitochondrial apoptosis pathway. Nature Cell Biol. 6, 121–128.

    Article  PubMed  CAS  Google Scholar 

  16. Yamaguchi H., Chen J., Bhalla K., Wang H.-G. 2004. Regulation of Bax activation and apoptotic response to microtubule-damaging agents by p53 transcription-dependent and independent pathways. J. Biol. Chem. 279, 39431–39437.

    Article  PubMed  CAS  Google Scholar 

  17. Wei M.C., Zong W.X., Cheng E.H., et al. 2001. Proapototic Bax and Bak: A requisite gateway to mitochondrial dysfunction and death. Science. 292, 727–730.

    Article  PubMed  CAS  Google Scholar 

  18. Chipuk J.E., Kuwana T., Bouchier-Hayes L., et al. 2004. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science. 303, 1010–1014.

    Article  PubMed  CAS  Google Scholar 

  19. Yakovlev A.G., Giovanni S.D, Wang G., et al. 2004. Bok and Noxa are essential mediators of p53-dependent apoptosis. J. Biol. Chem. 279, 28367–28374.

    Article  PubMed  CAS  Google Scholar 

  20. Oda E., Ohki R., Murasawa H., et al. 2000. Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science. 288, 1053–1058.

    Article  PubMed  CAS  Google Scholar 

  21. Villunger A., Michalak E.M., Coultas L., et al. 2003. p53-and drug-induced apoptotic responses mediated by BH3-only proteins Puma and Noxa. Science. 302, 1036–1038.

    Article  PubMed  CAS  Google Scholar 

  22. Karst A.M., Li G., 2007. BH3-only proteins in tumorigenesis and malignant melanoma. Cell. Mol. Life Sci. 64, 318–330.

    Article  PubMed  CAS  Google Scholar 

  23. Yu J., Zhang L., Hwang P.M., et al. 2001. Puma induces the rapid apoptosis of colorectal cancer cells. Mol. Cell. 7, 673–682.

    Article  PubMed  CAS  Google Scholar 

  24. Nakano K., Vousden K.H. 2001. Puma, a novel proapoptotic gene, is induced by p53. Mol. Cell. 7, 683–694.

    Article  PubMed  CAS  Google Scholar 

  25. Yu J., Wang Z., Kinzler K.W., et al. 2003. Puma mediates the apoptotic response to p53 in colorectal cancer cells. Proc. Natl. Acad. Sci. USA. 100, 1931–1936.

    Article  PubMed  CAS  Google Scholar 

  26. Ming L., Wang P., Bank A., et al. 2006. Puma dissociates Bax and Bcl-XL to induce apoptosis in colon cancer cells. J. Biol. Chem. 281, 16034–16042.

    Article  PubMed  CAS  Google Scholar 

  27. Wyttenbach A., Tolkovsky A.M. 2006. The BH3-only protein Puma is both necessary and sufficient for neuronal apoptosis induced by DNA damage in sympathetic neurons. J. Neurochem. 96, 1213–1226.

    Article  PubMed  CAS  Google Scholar 

  28. Wolter K.G., Hsu Y.-T., Smith C.L., et al. 1997. Movement of Bax from the cytosol to mitochondria during apoptosis. J. Cell Biol. 139, 1281–1292.

    Article  PubMed  CAS  Google Scholar 

  29. Seth R., Yang C., Kaushal V., et al. 2005. P53-dependent caspase-2 activation in mitochondrial release of apoptosis-inducing factor and its role in renal tubular epithelial cell injury. J. Biol. Chem. 280, 31230–31239.

    Article  PubMed  CAS  Google Scholar 

  30. Jiang X., Wang X. 2000. Cytochrome c promotes caspase-9 activation by inducing nucleotide binding to Apaf-1. J. Biol. Chem. 275, 31199–31203.

    Article  PubMed  CAS  Google Scholar 

  31. Paroni G., Henderson C., Schneider C., Brancolini C. 2002. Caspase-2 can trigger cytochrome c release and apoptosis from the nucleus. J. Biol. Chem. 277, 15147–15161.

    Article  PubMed  CAS  Google Scholar 

  32. Liu Z., Lu H., Shi H., et al. 2005. Puma overexpression induces reactive oxygen species generation and proteasome-mediated stathmin degradation in colorectal cancer cells. Cancer Res. 65, 1647–1654.

    Article  PubMed  CAS  Google Scholar 

  33. Hemann M.T., Zilfou J.T., Zhao Z., et al. 2004. Suppression of tumorigenesis by the p53 target Puma. Proc. Natl. Acad. Sci. USA. 101, 9333–9338.

    Article  PubMed  CAS  Google Scholar 

  34. Galluzzi L., Larochette N., Zamzami N., Kroemer G. 2006. Mitochondria as therapeutic targets for cancer chemotherapy. Oncogene. 25, 4812–4830.

    Article  PubMed  CAS  Google Scholar 

  35. Orrenius S., Gogvadze V., Zhivotovsky B. 2007. Mitochondrial oxidative stress: Implications for cell death. Annu. Rev. Pharmocol. Toxicol. 47, 19.1–19.41.

    Google Scholar 

  36. Finkel E. 2001. The mitochondrion: Is it central to apoptosis? Science. 292, 624–626.

    Article  PubMed  CAS  Google Scholar 

  37. Wang X. 2001. The expanding role of mitochondria in apoptosis. Genes Dev. 15, 2922–2933.

    PubMed  CAS  Google Scholar 

  38. Bonnet S., Archer S.L., Allalunis-Turner J., et al. 2007. A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell. 11, 37–51.

    Article  PubMed  CAS  Google Scholar 

  39. Skulachev V.P. 1997. Membrane-linked systems preventing superoxide formation. Bioscience Rep. 3, 347–366.

    Article  Google Scholar 

  40. Hirsch T., Marzo I., Kroemer G. 1997. Role of the mitochondrial permeability transition pore in apoptosis. Bioscience Rep. 1, 67–76.

    Article  Google Scholar 

  41. Kelly M. B., Salvesen G. S. 2003. Mechanisms of caspase activation. Cell Biol. 15, 725–731.

    Google Scholar 

  42. Strasser A., O’Connor L., Dixit V.M. 2000. Apoptosis signaling. Annu. Rev. Biochem. 69, 217–245.

    Article  PubMed  CAS  Google Scholar 

  43. Adrain C, Slee EA, Harte MT, Martin SJ. 1999. Regulation of apoptotic protease activating factor-1 oligomerization and apoptosis by the WD-40 repeat region. J. Biol. Chem. 274, 20855–20860.

    Article  PubMed  CAS  Google Scholar 

  44. Holcik M., Korneluk R.G. 2001. XIAP, the guardian angel. Nature Rev. Mol. Cell. Biol. 2, 550–556.

    Article  CAS  Google Scholar 

  45. Leist M., Jaattela M. 2001. Four deaths and a funeral: From caspases to alternative mechanisms. Nature Rev. Mol. Cell. Biol. 2, 589–598.

    Article  CAS  Google Scholar 

  46. Hussain S.P., Harris C.C. 2006. Biological network: At the crossroads of the cellular-stress response pathway and molecular carcinogenesis. J. Nippon Med. School. 73, 54–64.

    Article  CAS  Google Scholar 

  47. Chumakov P.M. Function of the p53 gene: Choice between life and death. Biokhimiya. 1, 34–47.

  48. Ito M., Nishiyama H., Watanabe J., et al. 2006. Association of the PIG3 promoter polymorphism with invasive bladder cancer in a Japanese population. Jap. J. Clin. Oncol. 2, 116–120.

    Article  Google Scholar 

  49. Venot C., Maratrat M., Dureuil C., et al. 1998. The requirement for the p53 proline-rich functional domain for mediation of apoptosis is correlated with specific PIG3 gene transactivation and with transcriptional repression. EMBO J. 17, 4668–4679.

    Article  PubMed  CAS  Google Scholar 

  50. Ravi D., Das K.C. 2004. Redox-cycling of anthracyclines by thioredoxin system: Increased superoxide generation and DNA damage. Cancer Chemother. Pharmacol. 54, 449–458.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Glazunova.

Additional information

Original Russian Text © V.A.Glazunova, A.A. Shtil, 2008, published in Molekulyarnaya Biologiya, 2008, Vol. 42, No. 5, pp. 765–771.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glazunova, V.A., Shtil, A.A. Mitochondrial mechanisms of apoptosis in response to DNA damage. Mol Biol 42, 681–686 (2008). https://doi.org/10.1134/S0026893308050051

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893308050051

Key words

Navigation