Skip to main content
Log in

Biodegradation of Azo Dye Methyl Red by Methanogenic Microbial Communities Isolated from Volga River Sediments

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Azo dyes are soluble xenobiotics stable under oxidizing conditions, which are widely used in human practice; they are present in liquid and solid industrial and household wastes and regularly enter the environment. In this work, we investigated the possibility of degradation of the technical azo dye Methyl Red (MR) by anaerobic microbial communities isolated from the Volga River sediments, and MR effect on community composition and methanogenic activity. This is the first report on ability of such azo dye-unadopted communities to degrade MR with production of stable N,N-dimethyl-p-phenylenediamine and biodegradable 2-aminobenzoic acid. Comparison of methanogenesis rates in communities with and without MR revealed a decrease in biogas production by 43.80% due to the toxic effect of MR (and, possibly, of aromatic intermediates of its decomposition) on microorganisms. Next-generation sequencing of the 16S rRNA gene revealed significant changes in the structural and functional organization of the methanogenic community in the presence of MR and a shift among the dominant groups. In the community with MR the share of bacteria of the family Geobacteriaceae increased almost 5-fold, while that of the family Clostridiaceae decreased 3‑fold, and the genus Proteiniclasticum became dominant. In the presence of MR, representatives of the families Methanobacteriaceae, Methanofastidiosaceae, Methanoregulaceae, Methanosaetaceae, and Methanomassillicoccaceae, which constituted 33.32% of the total number of archaea in the initial community, were not detected. An increase in the proportion of microorganisms of the families Desulfоvibrionaceae, Desulfosarcinaceae, and Gallionellaceae was presumably related to their possible involvement in MR degradation, since they usually act as syntrophs in methanogenic communities. MR decolorization was confirmed to require the presence of living cells, adsorption being only its initial stage, and the effect of chemical reduction of the azo bond was minimal. Our preliminary laboratory model shows that while natural communities are potentially capable of destroying MR, the azo dye also has a significant effect on their structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Andren, O. and Balandreau, J., Biodiversity and soil functioning ‒ from black box to can of worms?, Appl. Soil. Ecol., 1999, vol. 2, pp. 105‒108.

    Article  Google Scholar 

  2. Bolyen, E., Rideout, J.R., Dillon, M.R., Bokulich, N.A., Abnet, C.C., Al-Ghalith, G.A., Alexander, H., Alm, E.J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J.E., Bittinger, K., Brejnrod, A., Brislawn, C.J., et al., Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2, Nat. Biotechnol., 2019, vol. 37, pp. 852‒857.

    Article  CAS  Google Scholar 

  3. Fadrosh, D.W., Ma, B., Gajer, P., Sengamalay, N., Ott, S., Brotman, R.M., and Ravel, J., An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform, Microbiome, 2014, vol. 2, pp. 1‒7.

    Article  Google Scholar 

  4. Friedlingstein, P., Betts, R.A., and Bopp, L., Climate–carbon cycle feedback analysis: results from the C4 MIP model intercomparison, J. Climate, 2006, vol. 19, pp. 3338‒3353.

    Article  Google Scholar 

  5. Glockner, F.O., Kube, M., and Bauer, M., Complete genome sequence of the marine planctomycete Pirellula sp. strain 1, Proc. Natl. Acad. Sci. U. S. A., 2003, vol. 100, pp. 8298–8303.

    Article  CAS  Google Scholar 

  6. Gordon, P.F. and Gregory, P., Organic Chemistry in Color, Berlin: Springer, 1983.

    Book  Google Scholar 

  7. Guan, X., Liu, F., Xie, Y., Zhu, L., and Han, B., Microbiota associated with the migration and transformation of chlorinated aliphatic hydrocarbons in groundwater, Environ. Geochem. Health, 2013, vol. 35, pp. 535–549.

    Article  CAS  Google Scholar 

  8. Hagglbom, M.M., Rivera, M.D., and Young, L.Y., Influence of alternative electron acceptors on the anaerobic biodegradability of chlorinated phenols and benzoic acids, A-ppl. Env. Microbiol., 1993, vol. 59, pp. 1162‒1167.

    Article  Google Scholar 

  9. Hilyard, E.J., Jones-Meehan, J.M., Spargo, B.J., and Hill, R.T., Enrichment, isolation, and phylogenetic identification of polycyclic aromatic hydrocarbondegrading bacteria from Elizabeth River sediments,  Appl. Env. Microbiol., 2008, vol. 74, pp. 1176‒1182.

    Article  CAS  Google Scholar 

  10. Hugerth, L.W., Wefer, H.A., Lundin, S., Jakobsson, H.E., Lindberg, M., Rodin, S., Engstrand, L., and Andersson, A.F., DegePrime, a program for degenerate primer design for broad-taxonomic-range PCR in microbial ecology studies, Appl. Environ. Microbiol., 2014, vol. 80, pp. 5116‒5123.

    Article  Google Scholar 

  11. Inoue, D., Hara, S., Kashihara, M., Murai, Y., Danzl, E., Sei, K., Tsunoi, S., Fujita, M., and Ike, M., Degradation of bis(4-hydroxyphenyl) methane (bisphenol F) by Sphingobium yanoikuyae strain FM-2 isolated from river water, Appl. Environ. Microbiol., 2008, vol. 74, pp. 352‒358.

    Article  CAS  Google Scholar 

  12. Johann, H. and Georg, F., Microbial anaerobic aromatic metabolism, Anaerobe, 1997, vol. 3, pp. 1‒22.

    Article  Google Scholar 

  13. Khomenkov, V.G., Shevelev, A.B., Zhukov, V.G., Zagustina, N.A., Bezborodov, A.M., and Popov, V.O., Organization of metabolic pathways and molecular-genetic mechanisms of xenobiotic degradation in microorganisms: a review, Appl. Biochem. Microbiol., 2008, vol. 44, pp. 117‒132.

    Article  CAS  Google Scholar 

  14. Kirchman, D.L., The ecology of Cytophaga-Flavobacteria in aquatic environments, FEMS Microbiol. Ecol., 2002, vol. 39, pp. 91–100.

    CAS  PubMed  Google Scholar 

  15. Kluge, C., Tschech, A., and Fuchs, G., Anaerobic metabolism of resorcylic acid and resorcinol in a fermenting and in denitrifying bacterium, Arch. Microbiol., 1990, vol. 155, pp. 68‒74.

    Article  CAS  Google Scholar 

  16. Kras’ko, S.A., Bogomazova, A.A., Mikhailova, N.N., and Dekhtyar’, T.F., Indikatory (Indicators), Moscow: UG-NTU, 2017, no. 7.

  17. Lin’kova, Yu.V., Kotova, I.B., and Netrusov, A.I., Ability of microbial communities from Lake Tsaidam bottom sediments to carry out methanogenic degradation of aminoaromatic xenobiotics, Voda: Khim. Ekol., 2013, no. 1, pp. 64‒70.

  18. Lin’kova, Yu.V., Kulikova, I.A., Kotova, I.B., and Netrusov, A.I., Degradation of azo dyes and aromatic amines by methanogenic microbial communities from the sludge of waste processing plants, Voda: Khim. Ekol., 2011, no. 7, pp. 51‒58.

  19. McGuire, K.L. and Treseder, K.K., Microbial communities and their relevance for ecosystem models: decomposition as a case study, Soil Biol. Biochem., 2010, vol. 42, pp. 529‒535.

    Article  CAS  Google Scholar 

  20. Merkel, A.Yu., Tarnovetskii, I.Yu., Podosokorskaya, O.A., and Toshchakov, S.V., Analysis of 16S rRNA primer systems for profiling of thermophilic microbial communities, Microbiology (Moscow), 2019, vol. 88, pp. 671–680.

    Article  CAS  Google Scholar 

  21. Rawat, D., Mishra, V., and Sharma, R.Sh., Detoxification of azo dyes in the context of environmental processes, Chemosphere, 2016, vol. 155, pp. 591‒605.

    Article  CAS  Google Scholar 

  22. Razo-Flores, E., Biotransformation and biodegradation of N-substituted aromatics in methanogenic granular sludge, Ph.D. Thesis, Wageningen Univ., Wageningen, The Netherlands, 1997.

  23. Savel’eva, O.V., Kotova, I.B., Sklyar, V.I., Kalyuzhnyi, S.V., and Netrusov, A.I., Isolation of strain Pseudomonas sp. ASA2 from a methanogenic community degrading aminobenzoate and aminosalicylate, Microbiology (Moscow), 2002, vol. 71, pp. 241‒242.

    Article  Google Scholar 

  24. Savelieva, O., Kotova, I., Roelofsen, W., Stams, A.J.M., and Netrusov, A., Conversion of aminoaromatic acids by a methanogenic enrichment and by a novel Citrobacter freundii strain, Arch. Microbiol., 2004, vol. 181, pp. 163‒170.

    Article  CAS  Google Scholar 

  25. Stolz, A., Basic and applied aspects in the microbial degradation of azo dyes, Appl. Microbiol. Biotechnol., 2001, vol. 56, pp. 69‒80.

    Article  CAS  Google Scholar 

  26. Watanabe, M., Higashioka, Y., Kojima, H., and Fukui, M., Desulfosarcina widdelii sp. nov. and Desulfosarcina alkanivorans sp. nov., hydrocarbon-degrading sulfate-reducing bacteria isolated from marine sediment and emended description of the genus Desulfosarcina, Int. J. Syst. Evol. Mi-crobiol., 2017, vol. 67, pp. 2994‒2997.

    Article  CAS  Google Scholar 

  27. Whittle, P.J., Lunt, D.O., and Evans, W.C., Anaerobic photometabolism of aromatic compounds by Rhodopseudomonas sp., Biochem. Soc. Trans., 1976, vol. 4, pp. 490‒491.

    Article  CAS  Google Scholar 

  28. Ye, D., Quensen, J.F. 3rd., Tiedje, J.M., and Boyd, S.A., Anaerobic dechlorination of polychlorobiphenyls (Aroclor 1242) by pasteurized and ethanol-treated microorganisms from sediments,  Appl. Env. Microbiol., 1992, vol. 58, pp. 1110‒1114.

    Article  CAS  Google Scholar 

  29. Yemashova, N.A., Kotova, I.B., Netrusov, A.I., and Kalyuzhnyi, S.V., Special traits of decomposition of azo dyes by anaerobic microbial communities, Appl. Biochem. Mic-robiol., 2009, vol. 45, pp. 176‒181.

    Article  CAS  Google Scholar 

  30. Zhang, K., Song, L., and Dong, X., Proteiniclasticum ruminis gen. nov., sp. nov., a strictly anaerobic proteolytic bacterium isolated from yak rumen, Int. J. Syst. Evol. Microbiol., 2010, vol. 60, pp. 2221‒2225.                                                     Translated by the authors

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to A.Yu. Merkel and A.A. Popova, Senior Researchers of the FRC “Fundamentals of Biotechnology” of the RAS for assistance in molecular biological research.

Funding

The study was carried out within the framework of the scientific project of the state task of Moscow State University no. 121032300094-7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Taktarova.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. This article does not contain any studies involving animals or human participants performed by any of the authors.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taktarova, Y.V., Shirinkina, L.I., Budennaya, A.S. et al. Biodegradation of Azo Dye Methyl Red by Methanogenic Microbial Communities Isolated from Volga River Sediments. Microbiology 91, 292–302 (2022). https://doi.org/10.1134/S0026261722300087

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261722300087

Keywords:

Navigation