Skip to main content
Log in

Biofilm Formation of the Facultative Thermophile Bacillus pumilus D194A and Affects of Sanitation Agents on Its Biofilms

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Bacillus pumilus D194a formed a strong biofilm on 96-well polystyrene microtiter plates and stainless-steel surfaces. Its optimum environmental factors for growth were determined as 50°C, pH 6.0, 1.5% NaCl for 48 h, whereas, the optimum biofilm formation was measured at 50°C, pH 8.0, 0% NaCl. The isolate was observed to have peritrichous flagella and it produced rigid pellicle. Extracellular polymeric substances (EPSs) of this strain were also determined to be; carbohydrate (33.5 µg/mL), protein (790 µg/mL) and extracellular DNA (eDNA) (18.5 kb). D194a cells formed biofilms on many abiotic surfaces, such as glass, polystyrene, stainless steel, polyvinyl chloride, polycarbonate, polypropylene, wherein polycarbonate (6.23 log/cm2) and polypropylene (6.14 log/cm2) were the generally preferred ones. Biofilm samples were treated with 15 different sanitation agents, including sodium metaperiodate (96.83%), nisin (93.82%), trichloroacetic acid (93.66%) and lysozyme (94.1%) for sanitation purposes. The elimination of eDNA in its 2 h-biofilm with DNase I was 98.48%, while this results was found as 96.06% for its 12 h-mature biofilm. In conclusion, this research demonstrated that B. pumilus D194a is a strong biofilm producer with a rigid structure harboring high protein and eDNA content, which cannot be easily destroyed by various chemical agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Abee, T., Kovács, Á.T., Kuipers, O.P., and Van der Veen, S., Biofilm formation and dispersal in Gram-positive bacteria, Curr. Opin. Biotech., 2011, vol. 22, no. 2, pp. 172‒179.

    Article  CAS  PubMed  Google Scholar 

  2. Adnan, M., Alshammari, E., Patel, M., Ashraf, S.A., Khan, S., and Hadi, S., Significance and potential of marine microbial natural bioactive compounds against biofilms/biofouling: necessity for green chemistry, Peer J., 2018, vol. 6, e5049.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Allison, D.G., The biofilm matrix, Biofouling., 2003, vol. 19, no. 2, pp. 139‒150.

    Article  CAS  PubMed  Google Scholar 

  4. Almeida, M.A.N. and De Franca, F.P., Thermophilic and mesophilic bacteria in biofilms associated with corrosion in a heat exchanger, World J. Microb. Biot., 1999, vol. 15 no. 4, pp. 439‒442.

    Article  Google Scholar 

  5. Anand, S., Singh, D., Avadhanula, M., and Marka, S., Development and control of bacterial biofilms on dairy processing membranes, Compr. Rev. Food Sci. F., 2014, vol. 13, no. 1, pp. 18‒33.

    Article  CAS  Google Scholar 

  6. Antoniou, K. and Frank, J.F., Removal of Pseudomonas putida biofilm and associated extracellular polymeric substances from stainless steel by alkali cleaning, J. Food Protect, 2005, vol. 68, no. 2, pp. 277‒281.

    Article  Google Scholar 

  7. Arnold, J.W. and Bailey, G.W., Surface finishes on stainless steel reduce bacterial attachment and early biofilm formation: scanning electron and atomic force microscopy study, Poult. Sci., 2000, vol. 79, no. 12, pp. 1839‒1845.

    Article  CAS  PubMed  Google Scholar 

  8. Artham, T., Sudhakar, M., Venkatesan, R., Nair, C.M., Murty, K.V.G.K., and Doble, M., Biofouling and stability of synthetic polymers in sea water, Int. Biodeter. Biodegr., 2009, vol. 63, no. 7, pp. 884‒890.

    Article  CAS  Google Scholar 

  9. Beech, I.B., Corrosion of technical materials in the presence of biofilms—current understanding and state-of-the art methods of study, Int. Biodeter. Biodegr., 2004, vol. 53, no. 3, pp. 177‒183.

    Article  CAS  Google Scholar 

  10. Blesa, A. and Berenguer, J., Contribution of vesicle-protected extracellular DNA to horizontal gene transfer in Thermus spp., Int Microbiol., 2015, vol. 18, no. 3, pp. 177‒187.

    CAS  PubMed  Google Scholar 

  11. Bolton, N., Critchley, M., Fabien, R., Cromar, N., and Fallowfield, H., Microbially influenced corrosion of galvanized steel pipes in aerobic water systems, J. Appl. Microbiol., 2010, vol. 109, no. 1, pp. 239‒247.

    CAS  PubMed  Google Scholar 

  12. Brooks, J.D. and Flint, S.H., Biofilms in the food industry: problems and potential solutions, Int. J. Food Sci. Tech, 2008, vol. 43, no. 12, pp. 2163‒2176.

    Article  CAS  Google Scholar 

  13. Chen, X. and Stewart, P.S., Biofilm removal caused by chemical treatments, Water Res., 2000, vol. 34, no. 17, pp. 4229‒4233.

    Article  CAS  Google Scholar 

  14. Cihan, A.C., Tekin, N., Ozcan, B., and Cokmus, C., The genetic diversity of genus Bacillus and the related genera revealed by 16S rRNA gene sequences and ARDRA analyses isolated from geothermal regions of Turkey, Braz. J. Microbiol., 2012, vol. 43, no. 1, pp. 309‒324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cihan, A.C., Karaca, B., Ozel, B.P., and Kilic, T., Determination of the biofilm production capacities and characteristics of members belonging to Bacillaceae family, World J. Microb. Biot., 2017, vol. 33, no. 6, p. 118.

    Article  CAS  Google Scholar 

  16. Coughlan, L.M., Cotter, P.D., Hill, C., and Alvarez-Ordóñez, A., New weapons to fight old enemies: novel strategies for the (bio) control of bacterial biofilms in the food industry, Front Microbiol., 2016, vol. 7, p. 1641.

    Article  PubMed  PubMed Central  Google Scholar 

  17. De Beer, D. and Paul S., Microbial biofilms, in The Prokaryotes, New York: Springer, 2006, pp. 904‒937.

    Google Scholar 

  18. Domingos, D.F., Dellagnezze, B.M., Greenfield, P., Reyes, L.R., Melo, I.S., Midgley, D.J., and Oliveira, V.M., Draft genome sequence of Bacillus pumilus CCMA-560, isolated from an oil-contaminated mangrove swamp, GenomeA., 2013, vol. 1, no. 5, e00707-13.

    PubMed  PubMed Central  Google Scholar 

  19. Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., and Smith, F., A colorimetric method for the determination of sugars, Nature, 1951, vol. 168, no. 4265, p. 167.

    Article  CAS  PubMed  Google Scholar 

  20. Galiè, S., García-Gutiérrez, C., Miguélez, E.M., Villar, C.J., and Lombó, F., Biofilms in the food industry: health aspects and control methods, Front Microbiol., 2018, vol. 9, p. 898.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Flemming, H.C., Role and levels of real-time monitoring for successful anti-fouling strategies-an overview, Water Sci. Technol., 2003, vol. 47, no. 5, pp. 1‒8.

    Article  CAS  PubMed  Google Scholar 

  22. From, C., Hormazabal, V., and Granum, P.E., Food poisoning associated with pumilacidin-producing Bacillus pumilus in rice, Int. J. Food Microbiol., 2007, vol. 115, no. 3, pp. 319‒324.

    Article  CAS  PubMed  Google Scholar 

  23. Giaouris, E.D. and Nychas, G.J.E., The adherence of Salmonella enteritidis PT4 to stainless steel: the importance of the air–liquid interface and nutrient availability, Food Microbiol., 2006, vol. 23, no. 8, pp. 747‒752.

    Article  CAS  PubMed  Google Scholar 

  24. Grande, R., Di Giulio, M., Bessa, L.J., Di Campli, E., Baffoni, M., Guarnieri, S., and Cellini, L., Extracellular DNA in Helicobacter pylori biofilm: a backstairs rumour, J. Appl. Microbiol., 2010, vol. 110, no. 2, pp. 490‒498.

    Article  PubMed  CAS  Google Scholar 

  25. Herigstad, B., Hamilton, M., and Heersink, J., How to optimize the drop plate method for enumerating bacteria, J. Microbiol. Meth., 2001, vol. 44, no. 2, pp. 121‒129.

    Article  CAS  Google Scholar 

  26. Horn, J.M., Davis, M., Martin, S., Lian, T. and Jones, D., Assessing microbiologically influenced corrosion of waste package materials in the Yucca Mountain repository, 6th Int. Conf. Nucl. Eng., San Diego, California, May, 1998.

  27. Husmark, U. and Rönner, U., The influence of hydrophobic, electrostatic and morphologic properties on the adhesion of Bacillus spores, Biofouling, 1992, vol. 5, no. 4, pp. 335‒344.

    Article  CAS  Google Scholar 

  28. Kilic, T., Karaca, B., Ozel, B. P., Ozcan, B., Cokmus, C., and Coleri Cihan, A., Biofilm characteristics and evaluation of the sanitation procedures of thermophilic Aeribacillus pallidus E334 biofilms, Biofouling., 2017, vol. 33, no. 4, pp. 352‒367.

    Article  CAS  PubMed  Google Scholar 

  29. Logan, N.A., Bacillus and relatives in foodborne illness, J. Appl. Microbiol., 2012, vol. 112, no. 3, pp. 417‒429.

    Article  CAS  PubMed  Google Scholar 

  30. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J., Protein measurement with the Folin phenol reagent, J. Biol. Chem., 1951, vol. 193, no. 1, pp. 265‒275.

    CAS  PubMed  Google Scholar 

  31. Lücking, G., Stoeckel, M., Atamer, Z., Hinrichs, J., and Ehling-Schulz, M., Characterization of aerobic spore-forming bacteria associated with industrial dairy processing environments and product spoilage, Int. J. Food Microbiol., 2013, vol. 166, no. 2, pp. 270‒279.

    Article  PubMed  Google Scholar 

  32. Meyer, B., Approaches to prevention, removal and killing of biofilms, Int. Biodeter. Biodegr., 2003, vol. 51, no. 4, pp. 249‒253.

    Article  CAS  Google Scholar 

  33. Mukhtar, T., Afridi, M.S., McArthur, R., Van Hamme, J.D., Rineau, F., Mahmood, T., and Mehmood, S., Draft genome sequence of Bacillus pumilus SCAL1, an endophytic heat-tolerant plant growth-promoting bacterium, Genome A., 2018, vol. 6, no. 18, e00306-18.

    PubMed  PubMed Central  Google Scholar 

  34. Nieminen, T., Rintaluoma, N., Andersson, M., Taimisto, A.M., Ali-Vehmas, T., Seppälä, A., and Salkinoja-Salonen, M., Toxinogenic Bacillus pumilus and Bacillus licheniformis from mastitic milk, Vet. Microbiol., 2007, vol. 124, nos. 3‒4, pp. 329‒339.

    Article  CAS  PubMed  Google Scholar 

  35. Okshevsky, M., Regina, V.R., and Meyer, R.L., Extracellular DNA as a target for biofilm control, Curr. Opin. Biotech., 2015, 33, pp. 73‒80.

    Article  CAS  PubMed  Google Scholar 

  36. Ozel, P.B., Kilic, T., Karaca, B., Yildiz, E.D., Cokmus, C., and Cihan, A.C., Productive biofilms from mesophilic to thermophilic endospore-forming bacilli for industrial applications, J. Microbiol., Biotech. Food Sci., 2017, vol. 7, no. 1, pp. 14‒21.

    Article  CAS  Google Scholar 

  37. Parkar, S.G., Flint, S.H., and Brooks, J.D., Physiology of biofilms of thermophilic bacilli-potential consequences for cleaning, J. Ind. Microbiol. Biotechnol., 2003, vol. 30, no. 9, pp. 553‒560.

    Article  CAS  PubMed  Google Scholar 

  38. Parkar, S.G., Flint, S.H., and Brooks, J.D., Evaluation of the effect of cleaning regimes on biofilms of thermophilic bacilli on stainless steel, J. Appl. Microbiol., 2004, vol. 96, no. 1, pp. 110‒116.

    Article  CAS  PubMed  Google Scholar 

  39. Palmer, J.S., Flint, S.H., Schmid, J., and Brooks, J.D., The role of surface charge and hydrophobicity in the attachment of Anoxybacillus flavithermus isolated from milk powder, J. Ind. Microbiol. Biotechnol., 2010, vol. 37, no. 11, pp. 1111‒1119.

    Article  CAS  PubMed  Google Scholar 

  40. Pirttijärvi, T.S.M., Wahlström, G., Rainey, F.A., Saris, P.E.J., and Salkinoja-Salonen, M.S., Inhibition of bacilli in industrial starches by nisin, J. Ind. Microbiol. Biot., 2001, vol. 26, no. 3, pp. 107‒114.

    Article  Google Scholar 

  41. Pitts, B., Hamilton, M.A., Zelver, N., and Stewart, P.S., A microtiter-plate screening method for biofilm disinfection and removal, J. Microbiol. Methods, 2003, vol. 54, no. 2, pp. 269‒276.

    Article  CAS  PubMed  Google Scholar 

  42. Ponnusamy, K., Paul, D., Kim, Y.S., and Kweon, J.H., 2 (5H)-Furanone: a prospective strategy for biofouling-control in membrane biofilm bacteria by quorum sensing inhibition, Braz. J. Microbiol., 2010, vol. 41, no. 1, pp. 227‒234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ren, D., Sims, J.J., and Wood, T.K., Inhibition of biofilm formation and swarming of Escherichia coli by (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2 (5H)-furanone, Environ. Microbiol., 2001, vol. 3, no. 11, pp. 731‒736.

    Article  CAS  PubMed  Google Scholar 

  44. Ren, D., Sims, J.J., and Wood, T.K., Inhibition of biofilm formation and swarming of Bacillus subtilis by (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2 (5H)-furanone, Lett. Appl. Microbiol., 2002, vol. 34, no. 4, pp. 293‒299.

    Article  CAS  PubMed  Google Scholar 

  45. Rogers, J., Dowsett, A.B., Dennis, P.J., Lee, J.V., and Keevil, C.W., Influence of plumbing materials on biofilm formation and growth of Legionella pneumophila in potable water systems, Appl. Environ. Microb., 1994, vol. 60, no. 6, pp. 1842‒1851.

    Article  CAS  Google Scholar 

  46. Sadekuzzaman, M., Yang, S., Mizan, M.F.R., and Ha, S.D., Current and recent advanced strategies for combating biofilms, Compr. Rev. Food Sci. F., 2015, vol. 14, no. 4, pp. 491‒509.

    Article  Google Scholar 

  47. Sadiq, F.A., Flint, S., Yuan, L., Li, Y., Liu, T., and He, G., Propensity for biofilm formation by aerobic mesophilic and thermophilic spore forming bacteria isolated from Chinese milk powders, Int. J. Food Microbiol., 2017, 262, p. 89‒98.

    Article  CAS  PubMed  Google Scholar 

  48. Satpathy, S., Sen, S.K., Pattanaik, S., and Raut, S., Review on bacterial biofilm: an universal cause of contamination, Biocatal. Agric. Biotechnol., 2016, 7, pp. 56‒66.

    Article  Google Scholar 

  49. Saxena, P., Joshi, Y., Rawat, K., and Bisht, R., Biofilms: architecture, resistance, quorum sensing and control mechanisms, Indian J. Microbiol., 2018, pp. 1‒10.

  50. Simmonds, P., Mossel, B.L., Intaraphan, T., and Deeth, H.C., Heat resistance of Bacillus spores when adhered to stainless steel and its relationship to spore hydrophobicity, J. Food Protect., 2003, vol. 66, no. 11, pp. 2070‒2075.

    Article  CAS  Google Scholar 

  51. Simões, M., Simões, L.C., and Vieira, M.J., A review of current and emergent biofilm control strategies, LWT- Food Sci.Tech-Brazil., 2010, vol. 43, no. 4, pp. 573‒583.

    Google Scholar 

  52. Stepanović, S., Vuković, D., Dakić, I., Savić, B., and Š-vabić-Vlahović, M., A modified microtiter-plate test for quantification of staphylococcal biofilm formation, J. Microbiol. Methods, 2000, vol. 40, no. 2, pp. 175‒179.

    Article  PubMed  Google Scholar 

  53. Stiefel, P., Mauerhofer, S., Schneider, J., Maniura-Weber, K., Rosenberg, U., and Ren, Q., Enzymes enhance biofilm removal efficiency of cleaners, Antimicrob. Agents Chemotherap., 2016, AAC-00400.

  54. Tabak, M., Scher, K., Hartog, E., Romling, U., Matthews, K.R., Chikindas, M.L., and Yaron, S., Effect of triclosan on Salmonella typhimurium at different growth stages and in biofilms, FEMS Microbiol. Lett., 2007, vol. 267, no. 2, pp. 200‒206.

    Article  CAS  PubMed  Google Scholar 

  55. Villanueva, J., Switala, J., Ivancich, A., and Loewen, P.C., Genome sequence of Bacillus pumilus MTCC B6033, GenomeA., 2014, vol. 2, no. 2, e00327-14.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Wilson, K., Preparation of genomic DNA from bacteria, Current Protocols in Molecular Biology, 2001, vol. 56, no. 1, pp. 2‒4.

    Article  Google Scholar 

  57. Woodward, M J., Sojka, M., Sprigings, K.A., and Humphrey, T.J., The role of SEF14 and SEF17 fimbriae in the adherence of Salmonella enterica serotype Enteritidis to inanimate surfaces, J. Med. Microbiol., 2000, vol. 49, no. 5, pp. 481‒487.

    Article  CAS  PubMed  Google Scholar 

  58. Yu, R., Hou, C., Liu, A., Peng, T., Xia, M., Wu, X., and Qiu, G., Extracellular DNA enhances the adsorption of Sulfobacillus thermosulfidooxidans strain ST on chalcopyrite surface, Hydrometallurgy, 2018, 176, pp. 97‒103.

    Article  CAS  Google Scholar 

  59. Yuan, D.D., Liu, G.C., Ren, D.Y., Zhang, D., Zhao, L., Kan, C.P., and Zhang, L.B., A survey on occurrence of thermophilic bacilli in commercial milk powders in China, Food Control, 2012, vol. 25, no. 2, pp. 752‒757.

    Article  Google Scholar 

  60. Yuan, Y. and Gao, M., Genomic analysis of a ginger pathogen Bacillus pumilus providing the understanding to the pathogenesis and the novel control strategy, Sci. Rep., 2015, 5, 10259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhao, C.W., Wang, H.Y., Zhang, Y.Z., and Feng, H., Draft genome sequence of Bacillus pumilus BA06, a producer of alkaline serine protease with leather-dehairing function, J. Bacteriol., 2012, vol. 194, no. 23, pp. 6668‒6669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was supported by the Scientific Research Project Office of Ankara University (project number 11B4240003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Kilic.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. This article does not contain any studies involving animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kilic, T., Coleri Cihan, A. Biofilm Formation of the Facultative Thermophile Bacillus pumilus D194A and Affects of Sanitation Agents on Its Biofilms. Microbiology 89, 64–73 (2020). https://doi.org/10.1134/S0026261720010087

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261720010087

Keywords:

Navigation