Skip to main content
Log in

Mechanisms of Bacterial Cell Division

  • REVIEWS
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Despite numerous studies, gaps still remain in our understanding of bacterial cell division. This review describes the basic mechanisms responsible for division of the bacterial cell and coordination of this process in space and time. Attention is concentrated on such well-studied, model microorganisms as gram-negative bacteria Escherichia coli and gram-positive Bacillus subtilis. The hypothetical models of cell division of mycoplasmas which lack a cell wall and have lost most of the genes encoding the homologs of the known components of the bacterial divisome are also considered. Due to the fact that the bacterial division apparatus is a promising target for new antibiotics, the investigation of this process, apart from basic importance, is also of applied interest, and therefore is one of the priorities of modern molecular microbiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Addinall, S.G., Bi, E., and Lutkenhaus, J., FtsZ ring formation in fts mutants, J. Bacteriol., 1996, vol. 178, pp. 3877‒3884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Adler, H.I., Fisher, W.D., Cohen, A., and Hardigree, A.A., Miniature Escherichia coli cells deficient in DNA, Proc. Natl. Acad. Sci. U. S. A., 1967, vol. 57, pp. 321‒326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Araujo-Bazan, L., Ruiz-Avila, L.B., Andreu, D., Huecas, S., and Andreu, J.M., Cytological profile of antibacterial FtsZ inhibitors and synthetic peptide MciZ, Front. Microbiol., 2016, vol. 7, p. 1558.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Balasubramanian, M.K., Srinivasan, R., Huang, Y., and Ng, K.H., Comparing contractile apparatus-driven cytokinesis mechanisms across kingdoms, Cytoskeleton (Hoboken), 2012, vol. 69, pp. 942‒956.

    Article  CAS  PubMed  Google Scholar 

  5. Balish, M.F., Mycoplasma pneumoniae, an underutilized model for bacterial cell biology, J. Bacteriol., 2014, vol. 196, pp. 3675‒3682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Beall, B. and Lutkenhaus, J., FtsZ in Bacillus subtilis is required for vegetative septation and for asymmetric septation during sporulation, Genes Dev., 1991, vol. 5, pp. 447‒455.

    Article  CAS  PubMed  Google Scholar 

  7. Begg, K.J. and Donachie, W.D., Cell shape and division in Escherichia coli: experiments with shape and division mutants, J. Bacteriol., 1985, vol. 163, pp. 615‒622.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Bernander, R., and Ettema, T.J., FtsZ-less cell division in archaea and bacteria, Curr. Opin. Microbiol., 2010, vol. 13, pp. 747‒752.

    Article  CAS  PubMed  Google Scholar 

  9. Bernhardt, T.G. and de Boer, P.A., SlmA, a nucleoid-associated, FtsZ binding protein required for blocking septal ring assembly over chromosomes in E. coli, Mol. Cell, 2005, vol. 18, pp. 555‒564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Betzig, E., Patterson, G.H., Sougrat, R., Lindwasser, O.W., Olenych, S., Bonifacino, J.S., Davidson, M.W., Lippincott-Schwartz, J., and Hess, H.F., Imaging intracellular fluorescent proteins at nanometer resolution, Science, 2006, vol. 313, no. 5793, pp. 1642‒1645.

    Article  PubMed  Google Scholar 

  11. Bi, E.F. and Lutkenhaus, J., FtsZ ring structure associated with division in Escherichia coli, Nature, 1991, vol. 354, no. 6349, pp. 161‒164.

    Article  CAS  PubMed  Google Scholar 

  12. Borchsenius, S.N., Chernova, O.A., Chernov, V.M., and Vishnyakov, I.E., Mikoplazmy v biologii i meditsine nachala XXI veka (Mycoplasmas in Biology and Medicine in the Early 21st Century), S.Pb., Nauka, 2016.

  13. Browning, G.F. and Citti, C., Mollicutes: Molecular Biology and Pathogenesis, Norfolk, UK: Horizon Sci., 2014.

    Google Scholar 

  14. Buss, J., Coltharp, C., Huang, T., Pohlmeyer, C., Wang, S.C., Hatem, C., and Xiao, J., In vivo organization of the FtsZ-ring by ZapA and ZapB revealed by quantitative super-resolution microscopy, Mol. Microbiol., 2013, vol. 89, pp. 1099‒1120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Carrion, M., Gomez, M.J., Merchante-Schubert, R., Dongarra, S., and Ayala J.A., mraW, an essential gene at the dcw cluster of Escherichia coli codes for a cytoplasmic protein with methyltransferase activity, Biochimie, 1999, vol. 81, pp. 879‒888.

    Article  CAS  PubMed  Google Scholar 

  16. Coltharp, C. and Xiao, J., Beyond force generation: why is a dynamic ring of FtsZ polymers essential for bacterial cytokinesis?, Bioessays, 2017, vol. 39, pp. 1‒11.

    Article  CAS  PubMed  Google Scholar 

  17. Dai, K. and Lutkenhaus, J., ftsZ is an essential cell division gene in Escherichia coli, J. Bacteriol., 1991, vol. 173, pp. 3500‒3506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. de Boer, P., Crossley, R., and Rothfield, L., The essential bacterial cell-division protein FtsZ is a GTPase, Nature, 1992, vol. 359, no. 6392, pp. 254‒256.

    Article  CAS  PubMed  Google Scholar 

  19. de Boer, P.A., Classic spotlight: discovery of ftsZ, J. Bacteriol., 2016, vol. 198, p. 1184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Duman, R., Ishikawa, S., Celik, I., Strahl, H., Ogasawara, N., Troc, P., Lowe, J., and Hamoen, L.W., Structural and genetic analyses reveal the protein SepF as a new membrane anchor for the Z ring, Proc. Natl. Acad. Sci. U. S. A., 2013, vol. 110, pp. E4601‒4610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Eraso, J.M., Markillie, L.M., Mitchell, H.D., Taylor, R.C., Orr, G., and Margolin, W., The highly conserved MraZ protein is a transcriptional regulator in Escherichia coli, J. Bacteriol., 2014, vol. 196, pp. 2053‒2066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Erickson, H.P., Anderson, D.E., and Osawa, M., FtsZ in bacterial cytokinesis: cytoskeleton and force generator all in one, Microbiol. Mol. Biol. Rev., 2010, vol. 74, pp. 504‒528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Erickson, H.P. and Osawa, M., FtsZ constriction force ‒ curved protofilaments bending membranes, Subcell Biochem., 2017, vol. 84, pp. 139‒160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Errington, J., Cell wall-deficient, L-form bacteria in the 21st century: a personal perspective, Biochem. Soc. Trans., 2017, vol. 45, pp. 287‒295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Errington, J. and Wu, L.J., Cell cycle machinery in Bacillus subtilis, in Prokaryotic Cytoskeletons: Filamentous Protein Polymers Active in the Cytoplasm of Bacterial and Archaeal Cells, Löwe, J. and Amos, L.A., Eds., Cham: Springer, 2017, pp. 67‒101.

    Google Scholar 

  26. Fleurie, A., Lesterlin, C., Manuse, S., Zhao, C., Cluzel, C., Lavergne, J.P., Franz-Wachtel, M., Macek, B., Combet, C., Kuru, E., VanNieuwenhze, M.S., Brun, Y.V., Sherratt, D., and Grangeasse, C., MapZ marks the division sites and positions FtsZ rings in Streptococcus pneumoniae, Nature, 2014, vol. 516, no. 7530, pp. 259‒262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fu, G., Huang, T., Buss, J., Coltharp, C., Hensel, Z., and Xiao, J., In vivo structure of the E. coli FtsZ-ring revealed by photoactivated localization microscopy (PALM), PLoS One, 2010, vol. 5, p. e12682.

    Article  CAS  PubMed  Google Scholar 

  28. Gardner, K.A., Moore, D.A., and Erickson, H.P., The C-terminal linker of Escherichia coli FtsZ functions as an intrinsically disordered peptide, Mol. Microbiol., 2013, vol. 89, pp. 264‒275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gibson, D.G., Glass, J.I., Lartigue, C., Noskov, V.N., Chuang, R.Y., Algire, M.A., Benders, G.A., Montague, M.G., Ma, L., Moodie, M.M., Merryman, C., Vashee, S., Krishnakumar, R., Assad-Garcia, N., Andrews-Pfannkoch, C., et al., Creation of a bacterial cell controlled by a chemically synthesized genome, Science, 2010, vol. 329, no. 5987, pp. 52‒56.

    Article  CAS  PubMed  Google Scholar 

  30. Haeusser, D.P. and Margolin, W., Splitsville: structural and functional insights into the dynamic bacterial Z ring, Nat. Rev. Microbiol., 2016, vol. 14, pp. 305‒319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hirota, Y., Ryter, A., and Jacob, F., Thermosensitive mutants of E. coli affected in the processes of DNA synthesis and cellular division, Cold Spring Harb. Symp. Quant. Biol., 1968, vol. 33, pp. 677‒693.

    Article  CAS  PubMed  Google Scholar 

  32. Holden, S.J., Pengo, T., Meibom, K.L., Fernandez Fernandez, C., Collier, J., and Manley, S., High throughput 3D super-resolution microscopy reveals Caulobacter crescentus in vivo Z-ring organization, Proc. Natl. Acad. Sci. U. S. A., 2014, vol. 111, pp. 4566‒4571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Holland, I.B. and Jones, C., The role of the FtsZ protein (SfiB) in UV-induced division inhibition and in the normal Escherichia coli cell division cycle, Ann. Inst. Pasteur Microbiol., 1985, vol. 136A, no. 1, pp. 165‒171.

    Article  CAS  PubMed  Google Scholar 

  34. Horger, I., Velasco, E., Mingorance, J., Rivas, G., Tarazona, P., and Velez, M., Langevin computer simulations of bacterial protein filaments and the force-generating mechanism during cell division, Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 2008, vol. 77, no. 1, pt 1, p. 011902.

  35. Hu, Z. and Lutkenhaus, J., Topological regulation of cell division in Escherichia coli involves rapid pole to pole oscillation of the division inhibitor MinC under the control of MinD and MinE, Mol. Microbiol., 1999, vol. 34, pp. 82‒90.

    Article  CAS  PubMed  Google Scholar 

  36. Hu, Z., Mukherjee, A., Pichoff, S., and Lutkenhaus, J., The MinC component of the division site selection system in Escherichia coli interacts with FtsZ to prevent polyme-rization, Proc. Natl. Acad. Sci. U. S. A., 1999, vol. 96, pp. 14819‒14824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hurley, K.A., Santos, T.M., Nepomuceno, G.M., Huynh, V., Shaw, J.T., and Weibel, D.B., Targeting the bacterial division protein FtsZ, J. Med. Chem., 2016, vol. 59, pp. 6975‒6998.

    Article  CAS  PubMed  Google Scholar 

  38. Hutchison, C.A., Chuang, R.-Y., Noskov, V.N., Assad-Garcia, N., Deerinck, T.J., Ellisman, M.H., Gill, J., Kannan, K., Karas, B.J., Ma, L., Pelletier, J.F., Qi, Z.-Q., Richter, R.A., Strychalski, E.A., Sun, L., et al., Design and synthesis of a minimal bacterial genome, Science, 2016, vol. 351, no. 6280. aad6253.

    Article  CAS  PubMed  Google Scholar 

  39. Hutchison, C.A., Peterson, S.N., Gill, S.R., Cline, R.T., White, O., Fraser, C.M., Smith, H.O., and Venter, J.C., Global transposon mutagenesis and a minimal Mycoplasma genome, Science, 1999, vol. 286, no. 5447, pp. 2165‒2169.

    Article  CAS  PubMed  Google Scholar 

  40. Jacq, M., Adam, V., Bourgeois, D., Moriscot, C., Di Guilmi, A.M., Vernet, T., and Morlot, C., Remodeling of the Z-ring nanostructure during the Streptococcus pneumoniae cell cycle revealed by photoactivated localization microscopy, MBio, 2015, vol. 6. e01108-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jacquier, N., Viollier, P.H., and Greub G., The role of peptidoglycan in chlamydial cell division: towards resolving the chlamydial anomaly, FEMS Microbiol. Rev., 2015, vol. 39, pp. 262‒275.

    Article  CAS  PubMed  Google Scholar 

  42. Jakimowicz, D. and van Wezel, G.P., Cell division and DNA segregation in Streptomyces: how to build a septum in the middle of nowhere?, Mol. Microbiol., 2012, vol. 85, pp. 393‒404.

    Article  CAS  PubMed  Google Scholar 

  43. Janion, C., Inducible SOS response system of DNA repair and mutagenesis in Escherichia coli, Int. J. Biol. Sci., 2008, vol. 4, pp. 338‒344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Leisch, N., Pende, N., Weber, P.M., Gruber-Vodicka, H.R., Verheul, J., Vischer, N.O.E., Abby, S.S., Geier, B., den Blaauwen, T., and Bulgheresi, S., Asynchronous division by non-ring FtsZ in the gammaproteobacterial symbiont of Robbea hypermnestra, Nature Microbiol., 2016, vol. 2, p. 16182.

    Article  CAS  Google Scholar 

  45. Li, Y., Shao, S., Xu, X., Su, X., Sun, Y., and Wei, S., MapZ forms a stable ring structure that acts as a nanotrack for FtsZ treadmilling in Streptococcus mutans, ACS Nano, 2018. https://doi.org/10.1021/acsnano.8b02469

  46. Liechti, G.W., Kuru, E., Hall, E., Kalinda, A., Brun, Y.V., VanNieuwenhze, M., and Maurelli, A.T. A new metabolic cell-wall labelling method reveals peptidoglycan in Chlamydia trachomatis, Nature, 2014, vol. 506, no. 7489, pp. 507‒510.

    Article  CAS  PubMed  Google Scholar 

  47. Lindas, A.C., Karlsson, E.A., Lindgren, M.T., Ettema, T.J., and Bernander, R., A unique cell division machinery in the Archaea, Proc. Natl. Acad. Sci. U. S. A., 2008, vol. 105, pp. 18942–18946.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lluch-Senar, M., Querol, E., and Piñol J., Cell division in a minimal bacterium in the absence of ftsZ, Mol. Microbiol., 2010, vol. 78, pp. 278‒289.

    Article  CAS  PubMed  Google Scholar 

  49. Lowe, J., Crystal structure determination of FtsZ from Methanococcus jannaschii, J. Struct., Biol. 1998, vol. 124, pp. 235‒243.

    Article  CAS  Google Scholar 

  50. Lutkenhaus, J., Regulation of cell division in E. coli, Trends Genet. 1990, vol. 6, pp. 22‒25.

    Article  CAS  PubMed  Google Scholar 

  51. Lutkenhaus, J. and Du, S., E. coli cell cycle machinery, Subcell Biochem., 2017, vol. 84, pp. 27‒65.

    Article  CAS  PubMed  Google Scholar 

  52. Lutkenhaus, J., Pichoff, S., and Du, S., Bacterial cytokinesis: from Z ring to divisome, Cytoskeleton (Hoboken), 2012, vol. 69, pp. 778‒790.

    Article  CAS  PubMed  Google Scholar 

  53. Lutkenhaus, J.F., Coupling of DNA replication and cell division: sulB is an allele of ftsZ, J. Bacteriol., 1983, vol. 154, pp. 1339‒1346.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Lutkenhaus, J.F., Wolf-Watz, H., and Donachie, W.D., Organization of genes in the ftsA-envA region of the Escherichia coli genetic map and identification of a new fts locus (ftsZ), J. Bacteriol., 1980, vol. 142, pp. 615‒620.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Lyu, Z., Coltharp, C., Yang, X., and Xiao, J., Influence of FtsZ GTPase activity and concentration on nanoscale Z-ring structure in vivo revealed by three-dimensional superresolution imaging, Biopolymers, 2016, vol. 105, pp. 725‒734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ma, X., Ehrhardt, D.W., and Margolin, W., Colocalization of cell division proteins FtsZ and FtsA to cytoskeletal structures in living Escherichia coli cells by using green fluorescent protein, Proc. Natl. Acad. Sci. U. S. A., 1996, vol. 93, pp. 12998‒13003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mannik, J. and Bailey, M.W., Spatial coordination between chromosomes and cell division proteins in Escherichia coli, Front. Microbiol., 2015, vol. 6, p. 306.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Mannik, J., Bailey, M.W., O’Neill, J.C., and Mannik, J., Kinetics of large-scale chromosomal movement during asymmetric cell division in Escherichia coli, PLoS Genet., 2017, vol. 13. e1006638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mannik, J., Wu, F., Hol, F.J., Bisicchia, P., Sherratt, D.J., Keymer, J.E., and Dekker, C. Robustness and accuracy of cell division in Escherichia coli in diverse cell shapes, Proc. Natl. Acad. Sci. U. S. A., 2012, vol. 109, pp. 6957‒6962.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Marston, A.L., Thomaides, H.B., Edwards, D.H., Sharpe, M.E., and Errington, J., Polar localization of the MinD protein of Bacillus subtilis and its role in selection of the mid-cell division site, Genes Dev., 1998, vol. 12, pp. 3419‒3430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mercier, R., Kawai, Y., and Errington, J., Excess membrane synthesis drives a primitive mode of cell proliferation, Cell, 2013, vol. 152, pp. 997‒1007.

    Article  CAS  PubMed  Google Scholar 

  62. Mercier, R., Kawai, Y., and Errington, J., General principles for the formation and proliferation of a wall-free (L-form) state in bacteria, Elife, 2014, vol. 3. https://doi.org/10.7554/eLife.04629

  63. Miyagishima, S.Y., Nakamura, M., Uzuka, A., and Era, A., FtsZ-less prokaryotic cell division as well as FtsZ- and dynamin-less chloroplast and non-photosynthetic plastid division, Front. Plant Sci., 2014, vol. 5, p. 459.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Mizutani, M., Tulum, I., Kinosita, Y., Nishizaka, T., and Miyata, M., Detailed analyses of stall force generation in Mycoplasma mobile gliding, Biophys. J., 2018, vol. 114, pp. 1411‒1419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mukherjee, A. and Lutkenhaus, J., Guanine nucleotide-dependent assembly of FtsZ into filaments, J. Bacteriol., 1994, vol. 176, pp. 2754‒2758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Osawa, M., Anderson, D.E., and Erickson, H.P., Reconstitution of contractile FtsZ rings in liposomes, Science, 2008, vol. 320, no. 5877, pp. 792‒794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Osawa, M. and Erickson, H.P., Liposome division by a simple bacterial division machinery, Proc. Natl. Acad. Sci. U. S. A., 2013, vol. 110, pp. 11000‒11004.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Ouzounov, N., Nguyen, J.P., Bratton, B.P., Jacobowitz, D., Gitai, Z., and Shaevitz, J.W., MreB orientation correlates with cell diameter in Escherichia coli, Biophys. J., 2016, vol. 111, pp. 1035‒1043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Panda, D., Bhattacharya, D., Gao, Q.H., Oza, P.M., Lin, H.Y., Hawkins, B., Hibbs, D.E., and Ground-water, P.W., Identification of agents targeting FtsZ assembly, Future Med Chem., 2016, vol. 8, pp. 1111‒1132.

    Article  CAS  PubMed  Google Scholar 

  70. Pichoff, S. and Lutkenhaus, J., Unique and overlapping roles for ZipA and FtsA in septal ring assembly in Escherichia coli, EMBO J., 2002, vol. 21, pp. 685‒693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Pilhofer, M., Aistleitner, K., Biboy, J., Gray, J., Kuru, E., Hall, E., Brun, Y.V., VanNieuwenhze, M.S., Vollmer, W., Horn, M., and Jensen, G.J., Discovery of chlamydial peptidoglycan reveals bacteria with murein sacculi but without FtsZ, Nat. Commun., 2013, vol. 4, p. 2856.

    Article  CAS  PubMed  Google Scholar 

  72. Prozorov, A.A., The bacterial cell cycle: DNA replication, nucleoid segregation, and cell division, Microbiology (Moscow), 2005, vol. 74, pp. 375–387.

  73. Qin, T.T., Kang, H.Q., Ma, P., Li, P.P., Huang, L.Y., and Gu, B., SOS response and its regulation on the fluoroquinolone resistance, Ann. Transl. Med., 2015, vol. 3, p. 358.

    PubMed  PubMed Central  Google Scholar 

  74. Ramond, E., Maclachlan, C., Clerc-Rosset, S., Knott, G.W., and Lemaitre B., Cell division by longitudinal scission in the insect endosymbiont Spiroplasma poulsonii, MBio, 2016, vol. 7, no. 4. e00881-16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. RayChaudhuri, D. and Park, J.T., Escherichia coli cell-division gene ftsZ encodes a novel GTP-binding protein, Nature, 1992, vol. 359, no. 6392, pp. 251‒254.

  76. Rowlett, V.W. and Margolin, W., The bacterial Min system, Curr. Biol., 2013, vol. 23, pp. R553‒556.

    Article  CAS  PubMed  Google Scholar 

  77. Rowlett, V.W. and Margolin, W., The bacterial divisome: ready for its close-up, Philos. Trans. R. Soc. Lond. B. Biol. Sci., 2015, vol. 370, no. 1679. pii: 20150028.

  78. Rubin, J.E., Ball, K.R., and Chirino-Trejo, M., Antimicrobial susceptibility of Staphylococcus aureus and Staphylococcus pseudintermedius isolated from various animals, Can. Vet. J., 2011, vol. 52, pp. 153‒157.

    PubMed  PubMed Central  Google Scholar 

  79. Scheffers, D.J. and Pinho, M.G., Bacterial cell wall synthesis: new insights from localization studies, Microbiol. Mol. Biol. Rev., 2005, vol. 69, pp. 585‒607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Soderstrom, B., Skoog, K., Blom, H., Weiss, D.S., von Heijne, G., and Daley, D.O., Disassembly of the divisome in Escherichia coli: evidence that FtsZ dissociates before compartmentalization, Mol. Microbiol., 2014, vol. 92, pp. 1‒9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Steiner, W., Liu, G., Donachie, W.D., and Kuempel, P., The cytoplasmic domain of FtsK protein is required for resolution of chromosome dimers, Mol. Microbiol., 1999, vol. 31, pp. 579‒583.

    Article  CAS  PubMed  Google Scholar 

  82. Stokes, N.R., Baker, N., Bennett, J.M., Berry, J., Collins, I., Czaplewski, L.G., Logan, A., Macdonald, R., Macleod, L., Peasley, H., Mitchell, J.P., Nayal, N., Yadav, A., Srivastava, A., and Haydon, D.J., An improved small-molecule inhibitor of FtsZ with superior in vitro potency, drug-like properties, and in vivo efficacy, Antimicrob. Agents Chemother., 2013, vol. 57, pp. 317‒325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sun, N., Lu, Y.J., Chan, F.Y., Du, R.L., Zheng, Y.Y., Zhang, K., So, L.Y., Abagyan, R., Zhuo, C., Leung, Y.C., and Wong, K.Y., A Thiazole orange derivative targeting the bacterial protein FtsZ shows potent antibacterial activity, Front. Microbiol., 2017, vol. 8, p. 855.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Szwedziak, P., Wang, Q., Bharat, T.A., Tsim, M., and Lowe, J., Architecture of the ring formed by the tubulin homologue FtsZ in bacterial cell division, Elife, 2014, vol. 3. e04601.

    Article  PubMed  PubMed Central  Google Scholar 

  85. TerBush, A.D., Yoshida, Y., and Osteryoung, K.W., FtsZ in chloroplast division: structure, function and evolution, Curr. Opin. Cell Biol., 2013, vol. 25, pp. 461‒470.

    Article  CAS  PubMed  Google Scholar 

  86. Thanbichler, M. and Shapiro, L., MipZ, a spatial regulator coordinating chromosome segregation with cell division in Caulobacter, Cell, 2006, vol. 126, pp. 147‒162.

    Article  CAS  PubMed  Google Scholar 

  87. Tonthat, N.K., Arold, S.T., Pickering, B.F., Van Dyke, M.W., Liang, S., Lu, Y., Beuria, T.K., Margolin, W., and Schumacher, M.A., Molecular mechanism by which the nucleoid occlusion factor, SlmA, keeps cytokinesis in check, EMBO J., 2011, vol. 30, pp. 154‒164.

    Article  CAS  PubMed  Google Scholar 

  88. Treuner-Lange, A., Aguiluz, K., van der Does, C., Gomez-Santos, N., Harms, A., Schumacher, D., Lenz, P., Hoppert, M., Kahnt, J., Munoz-Dorado, J., and Sogaard-Andersen, L., PomZ, a ParA-like protein, regulates Z-ring formation and cell division in Myxococcus xanthus, Mol. Microbiol., 2013, vol. 87, pp. 235‒253.

    Article  CAS  PubMed  Google Scholar 

  89. Turnbull, L., Strauss, M.P., Liew, A.T.F., Monahan, L.G., Whitchurch, C.B., and Harry, E.J., Super-resolution imaging of the cytokinetic Z ring in live bacteria using fast 3D-structured illumination microscopy (f3D-SIM), J. Visual Exp.: JoVE, 2014, no. 91, p. 51469.

  90. Vedyaykin, A.D., Vishnyakov, I.E., Polinovskaya, V.S., Khodorkovskii, M.A., and Sabantsev, A.V., New insights into FtsZ rearrangements during the cell division of Escherichia coli from single-molecule localization microscopy of fixed cells, MicrobiologyOpen, 2016, vol. 5, pp. 378‒386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Vishnyakov, I.E. and Borchsenius, S.N., FtsZ and bacterial cell division, Cell Tissue Biol., 2007, vol. 1, no. 3, pp. 206‒214.

    Article  Google Scholar 

  92. Vishnyakov, I.E., Borchsenius, S.N., Basovskii, Y.I., Levitskii, S.A., Lazarev, V.N., Snigirevskaya, E.S., and Komissarchik, Y.Y., Localization of division protein FtsZ in Mycoplasma hominis, Cell Tissue Biol., 2009, vol. 3, no. 3, pp. 254‒262.

    Article  Google Scholar 

  93. Wang, H., Xie, L., Luo, H., and Xie, J., Bacterial cytoskeleton and implications for new antibiotic targets, J. Drug. Target, 2016, vol. 24, pp. 392‒398.

    Article  CAS  PubMed  Google Scholar 

  94. Weigle, J.J., Induction of mutations in a bacterial virus, Proc. Natl. Acad. Sci. U. S. A., 1953, vol. 39, pp. 628‒636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Willemse, J., Borst, J.W., de Waal, E., Bisseling, T., and van Wezel, G.P., Positive control of cell division: FtsZ is recruited by SsgB during sporulation of Streptomyces, Genes Dev., 2011, vol. 25, pp. 89‒99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Windsor, H.M., Windsor, G.D., and Noordergraaf, J.H., The growth and long term survival of Acholeplasma laidlawii in media products used in biopharmaceutical manufacturing, Biologicals, 2010, vol. 38, pp. 204‒210.

    Article  CAS  PubMed  Google Scholar 

  97. Wu, L.J. and Errington, J., Coordination of cell division and chromosome segregation by a nucleoid occlusion protein in Bacillus subtilis, Cell, 2004, vol. 117, pp. 915‒925.

    Article  CAS  PubMed  Google Scholar 

  98. Wu, L.J. and Errington, J., Nucleoid occlusion and bacterial cell division, Nat. Rev. Microbiol., 2011, vol. 10, pp. 8‒12.

    Article  CAS  PubMed  Google Scholar 

Download references

FUNDING

This work was supported by the Russian Science Foundation, project no. 17-74-20065.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. E. Vishnyakov.

Ethics declarations

Statement of the welfare of animals. This work did not involve any experiments on animal objects.

Conflict of interest. The authors declare that they have not conflicts of interests.

Additional information

Translated by D. Timchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vedyaykin, A.D., Ponomareva, E.V., Khodorkovskii, M.A. et al. Mechanisms of Bacterial Cell Division. Microbiology 88, 245–260 (2019). https://doi.org/10.1134/S0026261719030159

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261719030159

Keywords:

Navigation