Skip to main content
Log in

Iron-Reducing Microbial Communities of the Lake Baikal Low-Temperature Bottom Sediments

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Psychroactive enrichment cultures reducing anthraquinone 2,6-disulfonate (AQDS) and soluble complexes of ferric iron at 5–20°C were isolated from the samples of Lake Baikal bottom sediments collected at the depths of 404 to 1396 m. Cultivation resulted in production of up to 6 mM Fe(II), which was over 50% of the initial Fe(III) concentration in the medium, and of 5.5 mM AH2QDS (~30% of the initial quinone concentration). The enrichment culture of iron-reducing bacteria St3 used Fe(III) citrate as the terminal electron acceptor, oxidizing formate from 6.5 to 2.0 g L–1 at 15°C. Phylogenetic analysis showed that the initial samples of the Lake Baikal bottom sediments and the enrichments obtained from these samples contained the taxa of classes Alpha- and Betaproteobacteria, which were closely related to bacteria capable of oxidizing aromatic compounds using inorganic electron acceptors, including ferric iron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Anderson, R.T., Rooney-Varga, J., Gaw, C.V., and Lovley, D.R., Anaerobic benzene oxidation in the Fe(III)-reduction zone of petroleum-contaminated aquifers, Environ. Sci. Technol., 1998, vol. 32, pp. 1222–1229.

    Article  CAS  Google Scholar 

  2. Bel’kova, N.L., Parfenova, V.V., Kostornova, T.Ya., Denisova, L.Ya, and Zaichikov, E.F., Microbial biodiversity in the water of Lake Baikal, Microbiology (Moscow), 2003, vol. 72, pp. 203‒212. Cervantes, F.J., van der Velde, S., Lettinda, G., and Field, J.A., Competition between methanogenesis and quinone respiration for ecologically important substrates in anaerobic consortia, FEMS Microbiol. Ecol., 2000, vol. 34, pp. 161–171.

    Article  Google Scholar 

  3. Chernitsyna, S.M., Mamaeva, E.V., Lomakina, A.V., Pogodaeva, T.V., Galach’yants, Yu.P., Bukin, S.V., Pimenov, N.V., Khlystov, O.M., and Zemskaya, T.I., Phylogenetic diversity of microbial communities of the Posolsk Bank bottom sediments, Lake Baikal, Microbiology (Moscow), 2016, vol. 85, pp. 664‒671.

    Article  CAS  Google Scholar 

  4. Dedysh, S.N., Berestovskaya, Y.Y., Vasylieva, L.V., Belova, S.E., Khmelenina, V.N., Suzina, N.E., Trotsenko, Y.A., Liesack, W., and Zavarzin, G.A., Methylocella tundrae sp. nov., a novel methanotrophic bacterium from acidic tundra peatlands, Int. J. Syst. Evol. Microbiol., 2004, vol. 54, pp. 151–156.

    Article  CAS  PubMed  Google Scholar 

  5. Holmes, D., Nicoll, J., Bond, D., and Lovley, D., Potential role of a novel psychrotolerant member of the family Geobacteraceae, Geopsychrobacter electrodiphilus gen. nov., sp. nov., in electricity production by a marine sediment fuel cell, Appl. Environ. Microbiol., 2004, vol. 70, pp. 6023–6030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Inoue, D., Hara, S., Kashihara, M., Murai, Y., Danzl, E., Sei, K., Tsunoi, S., Fujita, M., and Ike, M., Degradation of bis(4-hydroxyphenyl)methane (bisphenol F) by Sphingobium yanoikuyae strain FM-2 isolated from river water, Appl. Environ. Microbiol., 2008, vol. 74, pp. 352–358.

    Article  CAS  PubMed  Google Scholar 

  7. Kashefi, K., Holmes, D.E., Lovley, D.R., and Tor, J., Potential importance of dissimilatory Fe(III)-reducing microorganisms in hot sedimentary environments, in The Subseafloor Biosphere at Mid-Ocean Ridges, Geophysical Monograph Series, Washington, DC: American Geophysical Union Press, 2004, no. 144, pp. 199–211.

  8. Kojima, H. and Fukui, M., Sulfuritalea hydrogenivorans gen. nov., sp. nov., a facultative autotroph isolated from a freshwater lake, Int. J. Syst. Evol. Microbiol., 2011, vol. 61, pp. 1651–1655.

    Article  CAS  PubMed  Google Scholar 

  9. Lovley, D.R., Dissimilatory Fe(III) and Mn(IV) reduction, Microbiol. Rev., 1991, vol. 55, pp. 259‒287.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Netrusov, A.I., Egorova, M.A., and Zakharchuk, L.M., Praktikum po mikrobiologii (Practical Course in Microbiology), Moscow: Akademiya, 2005.

  11. Nevin, K.P., Holmes, D.E., Woodard, T.L., Hinlein, E.S., Ostendorf, D.W., and Lovley, D.R., Geobacter bemidjiensis sp. nov. and Geobacter psychrophilus sp. nov., two novel Fe(III)-reducing subsurface isolates, Int. J. Syst. Evol. Microbiol., 2005, vol. 55, pp. 1667–1674.

    Article  CAS  PubMed  Google Scholar 

  12. Ramana, C. and Sasikala, C., Albidoferax, a new genus of Comamonadaceae and reclassification of Rhodoferax ferrireducens (Finneran et al., 2003) as Albidoferax ferrireducens comb. nov., J. Gen. Appl. Microbiol., 2009, vol. 55, pp. 301‒304.

    Article  CAS  PubMed  Google Scholar 

  13. Saxena, A., Anand, S., Dua, A., Sangwan, N., Khan, F., and Lal, R., Novosphingobium lindaniclasticum sp. nov., a hexachlorocyclohexane (HCH)-degrading bacterium isolated from an HCH dumpsite, Int. J. Syst. Evol. Microbiol., 2013, vol. 63, pp. 2160–2167.

    Article  CAS  PubMed  Google Scholar 

  14. Slobodkin, A.I. and Wiegel, J., Fe(III) as an electron acceptor for H2 oxidation in thermophilic anaerobic enrichment cultures from geothermal areas, Extremophiles, 1997, vol. 1, pp. 106‒109.

    Article  CAS  PubMed  Google Scholar 

  15. Sugio, T., Domatsu, C., Munakata, O., Tano, T., and Imai, K., Role of a ferric ion-reducing system in sulfur oxidation of Thiobacillus ferrooxidans, Appl. Environ. Microbiol., 1985, pp. 1401‒1406.

  16. Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S., MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0, Mol. Biol. Evol., 2013, vol. 30, pp. 2725–2729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ting L., Williams, T.J., Cowley, M.J., Lauro, F.M., Guilhaus, M., Raftery, M.J., and Cavicchioli, R., Cold adaptation in the marine bacterium, Sphingopyxis alaskensis, assessed using quantitative proteomics, Environ. Microbiol., 2010, vol. 12, pp. 2658–2676.

    CAS  PubMed  Google Scholar 

  18. Todorova, S.G. and Costello, A.M., Design of Shewanella-specific 16S rRNA primers and application to analysis of Shewanella in a minerotrophic wetland, Environ. Microbiol., 2006, vol. 3, pp. 426–432.

    Article  CAS  Google Scholar 

  19. Vargas, M., Kashefi, K., Blunt-Harris, E.L., and Lovley, D.R., Microbiological evidence for Fe(III) reduction on early Earth, Nature, 1998, vol. 395, pp. 65–67.

    Article  CAS  PubMed  Google Scholar 

  20. Viollier, E., Inglett, P.W., Hunter, K., Roychoudhury, A.N., and van Cappellen, P., The ferrozine method revisited: Fe(II)/Fe(III) determination in natural waters, Appl. Geochem., 2000, vol. 15, pp. 785–790.

    Article  CAS  Google Scholar 

  21. Watanabe, T., Kojima, H., and Fukui, M., Sulfuriferula multivorans gen. nov., sp. nov., isolated from a freshwater lake, reclassification of ‘Thiobacillus plumbophilus’ as Sulfuriferula plumbophilus sp. nov., and description of Sulfuricellaceae fam. nov. and Sulfuricellales ord. nov., Int. J. Syst. Evol. Microbiol., 2015, vol. 65, pp. 1504–1508.

    Article  CAS  PubMed  Google Scholar 

  22. Weelink, S.A.B., Van Doesburg, W., Saia, F.T., Rijpstra, W.I.C., Roling, W.F.M., Smidt, H., and Stams, A.J.M., A strictly anaerobic Betaproteobacterium Georgfuchsia toluolica gen. nov., sp. nov. degrades aromatic compounds with Fe(III), Mn(IV) or nitrate as an electron acceptor, FEMS Microbiol. Ecol., 2009, vol. 70, pp. 575–585.

    Article  CAS  PubMed  Google Scholar 

  23. Wolin, E.A., Wolin, M.J., and Wolfe R.S., Formation of methane by bacterial extracts, J. Biol. Chem., 1963, vol. 238, pp. 2882–2886.

    CAS  PubMed  Google Scholar 

  24. Zakharova, Yu.R., Kurilkina, M.I., Likhoshvay, A.V., Shishlyannikov, S.M., Kalyuzhnaya, O.V., Petrova, D.P., and Likhoshway, E.V., Effect of bacteria from the bottom water layer of Lake Baikal on degradation of diatoms, Paleontol. J., 2013, vol. 47, no. 9, pp. 1030–1034.

    Article  Google Scholar 

  25. Zavarzina, D.G., Kolganova, T.V., Boulygina, E.S., Kostrikina, N.A., Tourova, T.P., and Zavarzin, G.A., Geoalkalibacter ferrihydriticus gen. nov. sp. nov., the first alkaliphilic representative of the family Geobacteraceae, isolated from a soda lake, Microbiology (Moscow), 2006, vol. 75, pp. 664‒672.

    Article  CAS  Google Scholar 

  26. Zemskaya, T.I., Sitnikova, T.Y., Kiyashko, S.I., Kalmychkov, G.V., Pogodaeva, T.V., Mekhanikova, I.V., Naumova, T.V., Shubenkova, O.V., Chernitsina, S.M., Kotsar, O.V., Chernyaev, E.S., and Khlystov, O.M., Faunal communities at sites of gas- and oil-bearing fluids in Lake Baikal, Geo-Mar. Lett., 2012, vol. 32, pp. 437–451.

    Article  Google Scholar 

  27. Zemskaya, T.I., Pogodaeva, T.V., Shubenkova, O.V., Chernitsina, S.M., Dagurova, O.P., Buryukhaev, S.P., Namsaraev, B.B., Khlystov, O.M., Egorov, A.V., Krylov, A.A., and Kalmychkov, G.V., Geochemical and microbiological characteristics of sediments near the Malenky mud volcano (Lake Baikal, Russia), with evidence of Archaea intermediate between the marine anaerobic methanotrophs ANME-2 and ANME-3, Geo-Mar. Lett., 2010, vol. 30, pp. 411–425.

    Article  CAS  Google Scholar 

  28. Zhang, C., Stapleton, R.D., Zhou, J., Palumbo, A.V., and Phelps T.J., Iron reduction by psychrotrophic enrichment cultures, FEMS Microbiol. Ecol., 1999, vol. 30, pp. 367–371.

    Article  CAS  PubMed  Google Scholar 

  29. Zhilina, T.N., Zavarzina, D.G., Osipov, G.A., Kostrikina, N.A., and Tourova, T.P., Natronincola ferrireducens sp. nov., and Natronincola peptidovorans sp. nov., a new anaerobic alkaliphilic peptolytic iron-reducing bacteria isolated from soda lakes, Microbiology (Moscow), 2009, vol. 78, pp. 445‒454.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to T.I. Zemskaya (Laboratory of Carbohydrate Microbiology, Limnological Institute, Siberian Branch, Russian Academy of Sciences) and to O.P. Dagurova (Institute of General and Experimental Biology, Siberian Branch, Russian Academy of Sciences) for providing Lake Baikal bottom sediments. The work was supported by the Russian Foundation for Basic Researh, projects nos. 12-04-31353 and 12-05-01085.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Zakharyuk.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by P. Sigalevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakharyuk, A.G., Ryzhmanova, Y.V., Avtukh, A.N. et al. Iron-Reducing Microbial Communities of the Lake Baikal Low-Temperature Bottom Sediments. Microbiology 88, 156–163 (2019). https://doi.org/10.1134/S0026261719020139

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261719020139

Keywords:

Navigation