Skip to main content
Log in

Cyanobacterial Diversity in the Soils of Russian Dry Steppes and Semideserts

Microbiology Aims and scope Submit manuscript

Abstract

Taxonomic diversity of cyanobacterial communities in solonetz, meadow, chestnut, and brown semidesert soils of the zone of dry steppes and semideserts in three regions of Russia (Kalmyk Republic and Volgograd and Astrakhan oblasts) was studied. Cyanobacterial communities of the solonetz and chestnut soils were shown to be similar in structure, with predominance of the orders Nostocales and Synechococcales, while the similarity between meadow and brown semidesert soils was the lowest. Morphological and molecular genetic analysis revealed members of the genera Desmonostoc, Hassallia, Komvophoron, Nodosilinea, Pseudanabaena, and Rhabdoderma, which have not been previously detected in the soils of these types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Algal Collection of Soil Science Institute (ACSSI). http://acssi.org. Accessed 29.07.2017.

  • Alwathnani, H. and Johansen, J.R., Cyanobacteria in soils from a Mojave desert ecosystem, Monographs Western North American Naturalist, 2011, vol. 5, pp. 71–89.

    Article  Google Scholar 

  • Berrendero, E., Perona, E., and Mateo, P., Genetic and morphological characterization of Rivularia and Calothrix (Nostocales, Cyanobacteria) from running water, Int. J. Syst. Evol. Microbiol., 2008, vol. 58, pp. 447–460.

    Article  CAS  Google Scholar 

  • Bhatnagar, A., Makandar, M. B., Garg, M.K., and Bhatnagar, M., Community structure and diversity of cyanobacteria and green algae in the soils of Thar Desert (India), J. Arid Environ., 2008, vol. 72, pp. 73–83.

    Article  Google Scholar 

  • Chrismas, N., Barker, G., Anesio, A.M., and Sanches-Baracaldo, P., Genomic mechanisms for cold tolerance and production of exopolysaccharides in the Arctic cyanobacterium Phormidesmis priestleyi BC1401, BMC Genom., 2016, vol. 17, p. 533.

    Article  Google Scholar 

  • Dobrovol’skii, G.V. and Urusevskaya, I.S., Geografiya pochv (Soil Geography), Moscow: Mos. Gos. Univ., 2004.

    Google Scholar 

  • Flechtner, V.R., Boyer, S.L., Johansen, J.R., and DeNoble, M.L., Spirirestis rafaelensis gen. et sp. nov. (Cyanophyceae), a new cyanobacterial genus from arid soils, Nova Hedwigia, 2002, no. 74, pp. 1–24.

    Article  Google Scholar 

  • Garcia-Pichel, F., López-Cortés, A., and Nübel, U., Phylogenetic and morphological diversity of cyanobacteria in soil desert crusts from the Colorado Plateau, Appl. Environ. Microbiol., 2001, vol. 67, pp. 1902–1910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guiry, M.D. and Guiry, G.M., AlgaeBase. World-wide electronic publication. Natl. Univ. Ireland, Galway, 2017. http://www.algaebase.org. Accessed 29.07.2017.

    Google Scholar 

  • Hašler, P. and Poulícková, A., Diversity, taxonomy and autecology of autochtonous epipelic cyanobacteria of the genera Komvophoron and Isocystis (Borziaceae, Oscillatoriales), Biologia (Bratislava), 2010, vol. 65, no. 1, pp. 7–16.

    Google Scholar 

  • Hašler, P., Dvořák, P., Johansen, J. R., Kitner, M., Ondřej, V., and Poulíčková, A., Morphological and molecular study of epipelic filamentous genera Phormidium, Microcoleus and Geitlerinema (Oscillatoriales, Cyanophyta/Cyanobacteria), Fottea, 2012, no. 12, pp. 341–356.

    Google Scholar 

  • Hrouzek, P., Lukešová, A., Mareš, J., and Ventura, S., Description of the cyanobacterial genus Desmonostoc gen. nov. including D. muscorum comb. nov. as a distinct, phylogenetically coherent taxon related to the genus Nostoc, Fottea, 2013, vol. 13, no. 2, pp. 201–213.

    Article  Google Scholar 

  • Hu, C., Zhang, D., Huang, Z., and Liu, Y.D., The vertical microdistribution of cyanobacteria and green algae within desert crusts and the development of the algal crusts, Plant Soil, 2003, vol. 257, pp. 97–111.

    Article  CAS  Google Scholar 

  • Komárek, J. and Anagnostidis K., Cyanoprokaryota 2. Tell: Oscillatoriales, in Süsswasserflora von Mitteleuropa, Büdel, B., Krienitz, L., Gärtner, G., and Schagerl, M., Eds., Heidelberg: Elsevier, 2005, vol. 19, no. 2.

    Google Scholar 

  • Komárek, J. and Anagnostidis K., Cyanoprokaryota. Pt. 1. Chroococcales, in Süsswasserflora von Mitteleuropa Ettl, H., Gärtner, G., Heynig, H., and Mollenhhauer, D., Eds., Jena: Gustav Fischer, 1998, vol. 19/1.

  • Komárek, J., Cyanoprokaryota 3: Heterocytous Genera, in Süsswasserflora von Mitteleuropa, Budel, B., Gartner, G., Krienitz, L., and Schagerl, M., Eds., Berlin: Springer Spektrum, 2013, vol. 19/3.

  • Komárek, J., Kastovsky, J., Mares, J., and Johansen, J.R., Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach, Preslia, 2014, vol. 86, pp. 295–335.

    Google Scholar 

  • Komárek, J., Kastovský, J., Ventura, S., Turicchia, S., and Smarda, J., The cyanobacterial genus Phormidesmis, Algol. Studies, 2009, vol. 129, pp. 41–59.

    Article  Google Scholar 

  • Loza, V., Perona, E., Carmona, J., and Mateo, P., Phenotypic and genotypic characteristics of Phormidium-like cyanobacteria inhabiting microbial mats are correlated with the trophic status of running waters, Eur. J. Phycol., 2013, vol. 48, no. 2, pp. 235–252.

    Article  Google Scholar 

  • Novochkova-Ivanova, L.N., Pochvennye vodorosli fitotsenozov Sahkharo-Gobiiskoi pustynnoi oblasti (Soil Algae of the Phytocenoses of the Sahara-Gobi Desert Region), Leningrad: Nauka, 1980.

    Google Scholar 

  • Oren, A., Cyanobacteria in hypersaline environments: biodiversity and physiological properties, Biodivers. Conserv., 2015, vol. 24, pp. 781–798.

    Article  Google Scholar 

  • Park, J.-G., Algal flora of Korea. Cyanophyta: Cyanophyceae; Chlrococcales, Oscillatoriales in Freshwater Cyanoprokaryota I, Incheon: Natl. Inst. Biol. Res., 2012, vol. 5, no. 1.

    Google Scholar 

  • Perkerson, R.B. III, Johansen, J.R, Kovácik, L., Brand, J., Kaštovský, J., and Casamatta, D.A., A unique pseudanabaenalean (cyanobacteria) genus Nodosilinea gen. nov. based on morphological and molecular data, J. Phycol., 2011, vol. 47, pp. 1397–1412.

    Article  CAS  Google Scholar 

  • Pivovarova, Zh.F., Algal groupings of chestnut soils of the Kolyma steppes, Botan. Zh. 1986, vol. 71, no. 7, pp. 888–891.

    Google Scholar 

  • Řehácová, K., Johansen, J.R., Casamatta, D.A., Xuesong, L., and Vincent, J., Morphological and molecular characterization of selected desert soil cyanobacteria: three species new to science including Mojavia pulchra gen. et sp. nov., Phycologya, 2007, vol. 46, no. 5, pp. 481–502.

    Article  Google Scholar 

  • Sdobnikova, N.V., Soil algae, in Rastitel’nye soobshchestva i zhivotnoe naselenie stepei i pustyn’ Tsentral’nogo Kazakhstana (Plant Communities and Animal Population of the Steppes and Deserts of Central Kazakhstan), Leningrad: Nauka, 1969, pp. 295–306.

    Google Scholar 

  • Shtina, E.A. and Bolyshev, N.N., Algal communities in the soils of dry and desert steppes, Botan. Zh., 1963, vol. 48, no. 5, pp. 670–680.

    Google Scholar 

  • Shtina, E.A. and Bolyshev, N.N., Solonetz algae, Botan. Zh., 1960, vol. 45, no. 11, pp. 1619–1629.

    Google Scholar 

  • Shushueva, M.G., Soil algae in biogeocenoses of the Northern Kazakhstan steppe zone, Botan. Zh., 1985, vol. 70, no. 1, pp. 23–32.

    Google Scholar 

  • Strunecký, O., Elster, J., and Komárek, J., Phylogenetic relationships between geographically separate Phormidium cyanobacteria: is there a link between north and south polar regions?, Polar Biol. 2010, no. 33, pp. 1419–1428.

    Article  Google Scholar 

  • Strunecký, O., Komárek, J., and Smarda, J., Kamptonema (Microcoleaceae, Cyanobacteria), a new genus derived from the polyphyletic Phormidium on the basis of combined molecular and cytomorphological markers, Preslia, 2014, no. 86, pp. 193–207.

    Google Scholar 

  • Strunecký, O., Komárek, J., Johansen, J., Lukesová, A., and Elster, J., Molecular and morphological criteria for revision of the genus Microcoleus (Oscillatoriales, Cyanobacteria), J. Phycol., 2013, vol. 49, pp. 1167–1180.

    Article  PubMed  Google Scholar 

  • Temraleeva, A.D. and Dronova, S.A., First finding of the soil cyanobacterium Nodosilinea epilithica in Russia, Nov. Sist. Vyssh. Rast., 2016, vol. 50, pp. 125–141.

    Google Scholar 

  • Temraleeva, A.D., Mincheva, E.V., Bukin, Yu.S., and Andreeva, A.M., Sovremennyemetody vydeleniya, kul’tivirovaniya i identifikatsii zelenykh vodoroslei (CHLOROPHYTA) (Modern Techniques for Isolation, Cultivation, and Identification of Green Algae (CHLOROPHYTA)) Kostroma: Kostr. Pech. Dom, 2014.

    Google Scholar 

  • Turicchia, S., Ventura, S., Komárková, J., and Komárek, J., Taxonomic evaluation of cyanobacterial microflora from alkaline marshes of northern Belize. 2. Diversity of oscillatorialean genera, Nova Hedwigia, 2009, vol. 89, pp. 165–200.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Temraleeva.

Additional information

Original Russian Text © A.D. Temraleeva, 2018, published in Mikrobiologiya, 2018, Vol. 87, No. 2, pp. 191–203.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Temraleeva, A.D. Cyanobacterial Diversity in the Soils of Russian Dry Steppes and Semideserts. Microbiology 87, 249–260 (2018). https://doi.org/10.1134/S0026261718020169

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261718020169

Keywords

Navigation