Skip to main content
Log in

Mathematical Modeling of a Self-Oscillating Catalytic Reaction in a Flow Reactor

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The article is devoted to the analysis of possible spatiotemporal kinetic structures that can arise during catalytic oxidation reactions on metal surfaces at atmospheric pressure. The catalytic oscillatory reaction in a flow reactor is modeled using a 1D system of equations of the reaction–diffusion–convection type. The STM type oscillatory reaction model of catalytic oxidation is used as a kinetic model. The obtained results of mathematical modeling show the decisive influence of an axial mixing in the reactor on the development of spatiotemporal structures. It is also shown that, depending on the ratio of adsorption rates of reacting species, three different isothermal spatiotemporal structures can arise, namely a spatially inhomogeneous stationary state, regular and aperiodic “breathing structures”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Schuth, F., Henry, B.E., and Schmidt, L.D., Adv. Catal., 1995, vol. 39, p. 51.

    Article  Google Scholar 

  2. Slinko, M.M. and Jaeger, N.I., Oscillating Heterogeneous Catalytic Systems, Delmon, B. and Yates, J.T., Eds., Amsterdam: Elsevier, 1994, vol. 86.

    Google Scholar 

  3. Imbihl, R. and Ertl, G., Chem. Rev., 1995, vol. 95, p. 697.

    Article  CAS  Google Scholar 

  4. Bykov, V.I., Tsybenova, S.B., and Yablonsky, G., Chemical Complexity via Simple Models, Berlin: De Gruyter, 2018.

    Book  Google Scholar 

  5. Luss, D. and Sheintuch, M., Catal. Today, 2005, vol. 105, p. 254.

    Article  CAS  Google Scholar 

  6. Rotermund, H.H., J. Electron. Spectrosc. Relat. Phenom., 1999, vols. 98–99, p. 41.

    Article  Google Scholar 

  7. Wei, H., Lilienkamp, G., and Imbihl, R., Chem. Phys. Lett., 2004, vol. 389, p. 284.

    Article  CAS  Google Scholar 

  8. Marwaha, B., Annamalai, J., and Luss, D., Chem. Eng. Sci., 2001, vol. 56, p. 89.

    Article  CAS  Google Scholar 

  9. Lobban, L. and Luss, D., J. Phys. Chem., 1989, vol. 93, p. 6530.

    Article  CAS  Google Scholar 

  10. Lobban, L., Philippou, G., and Luss, D., J. Phys. Chem., 1989, vol. 93, p. 733.

    Article  CAS  Google Scholar 

  11. Brown, J.R., D’Netto, G.A., and Schmitz, R.A., Temporal Order, Rensing, L. and Jaeger, N., Eds., Berlin: Springer, 1985, p. 86.

    Google Scholar 

  12. Middya, U., Graham, M.D., Luss, D., and Sheintuch, M., J. Chem. Phys., 1993, vol. 98, p. 2823.

    Article  CAS  Google Scholar 

  13. Middya, U. and Luss, D., J. Chem. Phys., 1995, vol. 102, p. 5029.

    Article  Google Scholar 

  14. Sheintuch, M. and Nekhamkina, O., J. Chem. Phys., 1997, vol. 107, p. 8165.

    Article  CAS  Google Scholar 

  15. Digilov, R.M., Nekhamkina, O., and Sheintuch, M., AIChE J., 2004, vol. 50, p. 163.

    Article  CAS  Google Scholar 

  16. Nekhamkina, O., Digilov, R.M., and Sheintuch, M., J. Chem. Phys., 2003, vol. 119, p. 2322.

    Article  CAS  Google Scholar 

  17. Bychkov, V.Y., Tyulenin, Y.P., Korchak, V.N., and Aptekar, E.L., Appl. Catal. A: Gen., 2006, vol. 304, p. 21.

    Article  CAS  Google Scholar 

  18. Bychkov, V.Y., Tyulenin, Y.P., Slinko, M.M., and Korchak, V.N., Appl. Catal. A: Gen., 2007, vol. 321, p. 180.

    Article  CAS  Google Scholar 

  19. Bychkov, V.Y., Tyulenin, Y.P., Slinko, M.M., and Korchak, V.N., Catal. Lett., 2007, vol. 119, p. 339.

    Article  CAS  Google Scholar 

  20. Bychkov, V.Y., Tyulenin, Y.P., Slinko, M.M., and Korchak, V.N., Surf. Sci., 2009, vol. 603, p. 1680.

    Article  CAS  Google Scholar 

  21. Bychkov, V.Y., Tyulenin, Y.P., Slinko, M.M., Lomonosov, V.I., and Korchak, V.N., Catal. Lett., 2018, vol. 148, p. 3646.

    Article  CAS  Google Scholar 

  22. Bychkov, V.Y., Tyulenin, Y.P., Slinko, M.M., Gorenberg, A.Ya., Shashkin, D.P., and Korchak, V.N., React. Kinet. Mech. Catal., 2019, vol. 128, p. 587.

    Article  CAS  Google Scholar 

  23. Kaichev, V.V., Gladky, A.Y., Prosvirin, I.P., Saraev, A.A., Havecker, M., Knop-Gericke, A., Schlogl, R., and Bukhtiyarov, V.I., Surf. Sci., 2013, vol. 609, p. 113.

    Article  CAS  Google Scholar 

  24. Kaichev, V.V., Saraev, A.A., Gladky, A.Y., Prosvirin, I.P., Blume, R., Teschner, D., Havecker, M., Knop-Gericke, A., Schlogl, R., and Bukhtiyarov, V.I., Phys. Rev. Lett., 2017, vol. 119, p. 026001.

    Article  CAS  PubMed  Google Scholar 

  25. Slin’ko, M.M., Makeev, A.G., Bychkov, V.Yu., and Korchak, V.N., Kinet. Catal., 2022, vol. 63, no. 1, p. 87.

    Article  Google Scholar 

  26. Sales, B.C., Turner, J.E., and Maple, M.B., Surf. Sci., 1982, vol. 114, p. 381.

    Article  CAS  Google Scholar 

  27. Cross, M. and Greenside, H., Pattern Formation and Dynamics in Nonequilibrium Systems, Cambridge: Cambridge Univ. Press, 2009.

    Book  Google Scholar 

  28. Yelenin, G.G. and Makeev, A.G., Mat. Model., 1992, vol. 4, p. 11.

    Google Scholar 

  29. Peskov, N.V. and Slinko, M.M., Numerical simulation of self-oscillating catalytic reaction in plug-flow reactor. arXiv preprint arXiv:2303.12022.

Download references

Funding

This study was performed under government contract no. 122040500058-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Peskov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

STM, Sales–Turner–Maple mathematical model; PEEM, photoelectron emission spectroscopy; LEEM, low energy electron microscopy; IRT, infrared video thermography; XPS, X-ray photoelectron spectroscopy; CSTR, continuous stirring tank reactor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peskov, N.V., Slinko, M.M. Mathematical Modeling of a Self-Oscillating Catalytic Reaction in a Flow Reactor. Kinet Catal 65, 211–218 (2024). https://doi.org/10.1134/S0023158423601237

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158423601237

Keywords:

Navigation