Skip to main content
Log in

Allylic oxdation of alkenes with molecular oxygen catalyzed by porous coordination polymers Fe-MIL-101 and Cr-MIL-101

  • IX International Conference on Mechanisms of Catalytic Reactions (St. Petersburg, October 22–25, 2012)
  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The catalytic performances of Cr-MIL-101 and Fe-MIL-101 porous coordination polymers have been investigated in the allylic oxidation of alkenes, including natural terpenes, with molecular oxygen (1 atm) under mild solvent-free conditions. Both catalysts remain stable under optimal conditions (40°C for Fe-MIL-101 and 60°C for Cr-MIL-101) and can be recycled, at least, four times without loss of the catalytic properties. Fe-MIL-101 favours the formation of unsaturated alcohols, while Cr-MIL-101 mediates the formation of unsaturated ketones. The oxidation process involves the formation of alkene hydroperoxide via conventional radical chain process and its further transformations over the MIL-101 catalysts. The mechanism of the hydroperoxide transformation strongly depends on the metal nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cavani, F., Catal. Today, 2010, vol. 157, p. 8.

    Article  CAS  Google Scholar 

  2. Murphy, E.F., Mallat, T., and Baiker, A., Catal. Today, 2000, vol. 57, p. 115.

    Article  CAS  Google Scholar 

  3. Fine Chemicals through Heterogeneous Catalysis, Sheldon, R.A. and van Bekkum, H., Eds., New York: Wiley-VCH, 2001.

    Google Scholar 

  4. Sheldon, R.A., Wallau, M., Arends, I.W.C.E., and Schuchardt, U., Acc. Chem. Res., 1998, vol. 31, p. 485.

    Article  CAS  Google Scholar 

  5. Dhakshinamoorthy, A., Alvaro, M., and Garcia, H., Catal. Sci. Technol., 2011, vol. 1, p. 856.

    Article  CAS  Google Scholar 

  6. Corma, A. and Garcia, H., Llabres i xamena f.x, Chem. Rev., 2010, vol. 110, p. 4606.

    Article  CAS  Google Scholar 

  7. Ferey, G., Mellot-Draznieks, C., Serre, C., Millange, F., Dutour, J., Surble, S., and Margiolaki, I., Science, 2005, vol. 309, p. 2040.

    Article  CAS  Google Scholar 

  8. Bauer, S., Serre, C., Devic, T., Horcajada, P., Marrot, J., Ferey, G., and Stock, N., Inorg. Chem., 2008, vol. 47, p. 7568.

    Article  CAS  Google Scholar 

  9. Hwang, Y.K., Hong, D.-Y., Chang, J.-S., Seo, H., Yoon, M., Kim, J., Jhung, S.H., Serre, C., and Ferey, G., Appl. Catal., A, 2009, vol. 358, p. 249.

    Article  CAS  Google Scholar 

  10. Kim, J., Bhattacharjee, S., Jeong, K.-E., Jeong, S.-Y., and Ahn, W.-S., Chem. Commun., 2009, p. 3904.

    Google Scholar 

  11. Maksimchuk, N.V., Kovalenko, K.A., Fedin, V.P., and Kholdeeva, O.A., Adv. Synth. Catal., 2010, vol. 352, p. 2943.

    Article  CAS  Google Scholar 

  12. Taylor-Pashow, K.M.L., Della, Rocca J., Xie, Z., Tran, S., and Lin, W., J. Am. Chem. Soc., 2009, vol. 131, p. 14261.

    Article  CAS  Google Scholar 

  13. Shul’pin, G.B., J. Mol. Catal. A: Chem., 2002, vol. 189, p. 39.

    Article  Google Scholar 

  14. Wang, H.L., Duda, J.L., and Radke, C.J., J. Colloid Interface Sci., 1978, vol. 66, p. 153.

    Article  CAS  Google Scholar 

  15. Dapurkar, S.E., Kawanami, H., Komurab, K., Yokoyama, T., and Ikushima, Y., Appl. Catal., A, 2008, vol. 346, p. 112.

    Article  CAS  Google Scholar 

  16. Jiang, D., Mallat, T., Meier, D.M., Urakawa, A., and Baiker, A., J. Catal., 2010, vol. 270, p. 26.

    Article  CAS  Google Scholar 

  17. Tonigold, M., Lu, Y., Mavrandonakis, A., Puls, A., Staudt, R., Möllmer, J., Sauer, J., and Volkmer, D., Chem. Eur. J., 2011, vol. 17, p. 8671.

    Article  CAS  Google Scholar 

  18. Monteiro, J.L.F. and Veloso, C.O., Top. Cata.l, 2004, vol. 27, p. 169.

    Article  CAS  Google Scholar 

  19. Robles-Dutenhefner, P.A., Silva, M.J., Sales, L.S., Sousa, E.M.B., and Gusevskaya, E.V., J. Mol. Catal. A: Chem., 2004, vol. 217, p. 139.

    Article  CAS  Google Scholar 

  20. Menini, L., Pereira, M.C., Parreira, L.A., Fabris, J.D., and Gusevskaya, E.V., J. Catal., 2008, vol. 254, p. 355.

    Article  CAS  Google Scholar 

  21. Denisov, E.T., Mitskevich, N.I., and Agabekov, V.E., Mekhanizm zhidkofaznogo okisleniya kislorodsoderzhashchikh soedinenii (Mechanism of the Liquid-Phase Oxidation of Oxygen-Containing Compounds), Minsk: Nauka i Tekhnika, 1975.

    Google Scholar 

  22. Sheldon, R.A. and Kochi, J.K., Metal-Catalyzed Oxidations of Organic Compounds, New York: Academic, 1981.

    Google Scholar 

  23. Denisov, E.T. and Afanas’ev, I.B., Oxidation and Antioxidants in Organic Chemistry and Biology, Boca Raton, Fla.: Taylor & Francis, 2005.

    Book  Google Scholar 

  24. Emanuel’, N.M., Denisov, E.T., and Maizus, Z.K., Tsepnye reaktsii okisleniya uglevodorodov v zhidkoi faze (Chain Liquid-Phase Oxidation of Hydrocarbons), Moscow: Nauka, 1965.

    Google Scholar 

  25. Haber, F. and Weiss, J., Proc. R. Soc. London, Ser. A, 1934, vol. 147, p. 332.

    Article  CAS  Google Scholar 

  26. Lempers, H.E.B., Chen, J.D., and Sheldon, R.A., Stud. Surf. Sci. Catal., 1995, vol. 94, p. 705.

    Article  CAS  Google Scholar 

  27. Hermans, I., Peeters, J., and Jacobs, P.A., Top. Catal., 2008, vol. 48, p. 41.

    Article  CAS  Google Scholar 

  28. Singh, A.P., Torita, N., Shylesh, S., Iwasa, N., and Arai, M., Catal. Lett., 2009, vol. 132, p. 492.

    Article  CAS  Google Scholar 

  29. Tanase, S. and Bouwman, E., Adv. Inorg. Chem., 2006, vol. 58, p. 29.

    Article  CAS  Google Scholar 

  30. Kim, J., Harrison, R.G., Kim, C., and Que, L., Jr., J. Am. Chem. Soc., 1996, vol. 118, p. 4373.

    Article  CAS  Google Scholar 

  31. Oldenburg, P.D. and Que, L., Catal. Today, 2006, vol. 117, p. 15.

    Article  CAS  Google Scholar 

  32. Alvarez, L.X., Kudrik, E.V., and Sorokin, A.B., Chem. Eur. J., 2011, vol. 17, p. 9298.

    Article  CAS  Google Scholar 

  33. Sorokin, A.B. and Kudrik, E.V., Catal. Today, 2011, vol. 159, p. 37.

    Article  CAS  Google Scholar 

  34. Kudrik, E.V., Afanasiev, P., Alvarez, L.X., Dubourdeaux, P., Clemacey, M., Latour, J.-M., Blondin, G., Bouchu, D., Albrieux, F., Nefedov, S.E., and Sorokin, A.B., Nat. Chem., 2012, vol. 4, p. 1024.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Kholdeeva.

Additional information

Published in Russian in Kinetika i Kataliz, 2013, Vol. 54, No. 5, pp. 641–648.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skobelev, I.Y., Kovalenko, K.A., Fedin, V.P. et al. Allylic oxdation of alkenes with molecular oxygen catalyzed by porous coordination polymers Fe-MIL-101 and Cr-MIL-101. Kinet Catal 54, 607–614 (2013). https://doi.org/10.1134/S0023158413050169

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158413050169

Keywords

Navigation