Skip to main content
Log in

Evolution of the Crystal Structure and the Dielectric Properties of (Pb0.86Sr0.14)5Ge3O11 Single Crystals under High-Energy Electron Irradiation

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Single crystals of (Pb0.86Sr0.14)5Ge3O11 are prepared by a slow melt cooling. The effect of high-energy electron irradiation with fluences up to 6.2·1018 e/cm2 on the structural and dielectric properties of these crystals is studied; the dependence of crystal structure parameters on the fluences is considered; the structural mechanism of selective substitution of Pb by Sr is established. It is determined that the sites occupied by lead with a lone pair are not substituted by strontium cations. Up to the fluences of 6.2·1018 e/cm2, the (Pb0.86Sr0.14)5Ge3O11 structure remains perfect. It is shown that the irradiation with these fluences preserves the paraelectric structure at 293 K (\(P\bar{6}\) space group) and causes only minor atomic displacements. The temperature dependences of the dielectric permittivity and the dielectric loss (in the ranges of 5-300 K and 1-1000 kHz) show that the irradiation shifts TC from 158 K to 145 K and increases the diffusion of the ferroelectric phase transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. E. V. Peshikov. Radiatsionnye effekty v segnetoelektrikakh (Radiation Effects in Ferroelectrics). Tashkent, USSR: Fan, 1986. [In Russian]

  2. W. Cao. Defects in Ferroelectrics. In: Disorder and Strain-Induced Complexity in Functional Materials / Eds. T. Kakeshita, T. Fukuda, A. Saxena, and A. Planes: Springer Series in Materials Science, Vol. 148. Heidelberg, Germany: Springer, 2012, 113. https://doi.org/10.1007/978-3-642-20943-7_7

    Chapter  Google Scholar 

  3. G. S. Was. Fundamentals of Radiation Materials Science. Heidelberg, Germany: Springer, 2007.

  4. R. E. Stoller. Comprehensive Nuclear Materials: Primary Radiation Damage Formation. New York, USA: Elsevier, 2012.

  5. G. Messenger and M. S. Ash. The Effects of Radiation on Electronic Systems. Netherlands: Springer, 1992.

  6. A. Holmes-Siedle and L. Adams. Handbook of Radiation Effects. New York, USA: Oxford Univ. Press, 1993.

  7. Defects in microelectronic materials and devices / Eds. D.M. Fleetwood, R.D. Schrimpf. New York, USA: Taylor & Francis Group, 2019.

  8. S. A. Ivanov and A. I. Stash. Influence of neutron irradiation on the characteristics of phase transitions in multifunctional materials with a perovskite structure (A review). Russ. J. Inorg. Chem., 2020, 65(12), 1581-1613. https://doi.org/10.1134/S0036023620120049

    Article  CAS  Google Scholar 

  9. S. P. Solovyov, I. I. Kuzmin, and V. V. Zakurkin. Radiatsionnye effekty v titanate bariya. Titanat bariya. (Radiation Effects in Barium Titanate. Barium Titanate.). Moscow, Russia: Nauka, 1973. [In Russian]

  10. A. I. Stash, S. A. Ivanov, V. M. Boiko, V. S. Ermakov, S. Y. Stefanovich, and A. V. Mosunov. Radiation-induced changes in the structure and ferroelectric properties of Pb5Ge3O11 single crystals. J. Struct. Chem., 2021, 62(12), 1880-1895. https://doi.org/10.1134/s0022476621120088

    Article  CAS  Google Scholar 

  11. A. A. Bush and Yu. N. Venevtsev. Monokristally s segnetoelektricheskimi i rodstvennymi svoistvami v sisteme PbO–GeO2 i vozmozhnye oblasti ikh primeneniya (Single Crystals with Ferroelectric and Related Properties in the PbO–GeO2 System and Possible Areas of Their Application). Moscow, Russia: NIITEKHIM, 1981. [In Russian]

  12. Ferroelectrics and Related Substances. Oxides: Landolt-Bornstein, New Series - Groupe III, Vol. 16a. Berlin, Germany: Springer, 1982, 244.

  13. H. Iwasaki, K. Sugii, T. Yamada, and N. Niizeki. 5PbO·3GeO2 crystal: a new ferroelectric. Appl. Phys. Lett., 1971, 18(10), 444/445. https://doi.org/10.1063/1.1653487

    Article  CAS  Google Scholar 

  14. S. Nanamatsu, H. Sugiyama, K. Doi, and Y. Kondo1. Ferroelectricity in Pb5Ge3O11. J. Phys. Soc. Jpn., 1971, 31, 616. https://doi.org/10.1143/JPSJ.31.616

    Article  CAS  Google Scholar 

  15. H. Iwasaki, S. Miyazawa, H. Koizumi, K. Sugii, and N. Niizeki. Ferroelectric and optical properties of Pb5Ge3O11 and its isomorphous compound Pb5Ge2SiO11. J. Appl. Phys., 1972, 43, 4907. https://doi.org/10.1063/1.1661044

    Article  CAS  Google Scholar 

  16. M. I. Kay, R. E. Newnham, and R. W. Wolfe. The crystal structure of the ferroelectric phase of Pb5Ge3O11. Ferroelectrics, 1975, 9, 1-6. https://doi.org/10.1080/00150197508240073

    Article  CAS  Google Scholar 

  17. Y. J. Iwata. Neutron diffraction study of the structure of paraelectric phase of Pb5Ge3O11. J. Phys. Soc. Jpn., 1977, 43, 961-967. https://doi.org/10.1143/JPSJ.43.961

    Article  CAS  Google Scholar 

  18. S. A. Ivanov, A. I. Stash, and T. A. Sorokin. New investigations of the crystal structure of lead germanate Pb5Ge3O11. Crystallogr. Rep., 2022, 67(3), 334-347. https://doi.org/10.1134/s1063774522030099

    Article  CAS  Google Scholar 

  19. D. J. Lockwood, J. W. Arthur, W. Taylor, and T. J. Hosea. Observation of a central peak in lead germanite by light scattering. Solid State Commun., 1976, 20(7), 703-707. https://doi.org/10.1016/0038-1098(76)90751-1

    Article  CAS  Google Scholar 

  20. D. J. Lockwood, T. J. Hosea, and W. Taylor. The complete Raman spectrum of paraelectric and ferroelectric lead germanate. J. Phys. C: Solid State Phys., 1980, 13(8), 1539. https://doi.org/10.1088/0022-3719/13/8/023

    Article  CAS  Google Scholar 

  21. V. S. Gorelik and A. Yu. Pyatyshev. Raman scattering from the effective soft mode in lead germanate crystal. J. Raman Spectrosc., 2020, 51, 969. https://doi.org/10.1002/jrs.5854

    Article  CAS  Google Scholar 

  22. P. A. Fleury and K. B. Lyons. Central-peak dynamics at the ferroelectric transition in lead germanate. Phys. Rev. Lett., 1976, 37, 1088. https://doi.org/10.1103/PhysRevLett.37.1088

    Article  CAS  Google Scholar 

  23. G. R. Jones, N. Shaw, and A. W. Vere. Pyroelectric properties of lead germanate. Electron. Lett., 1972, 8, 345. https://doi.org/10.1049/el:19720252

    Article  Google Scholar 

  24. R. Watton, C. Smith, and G. R. Jons. Pyroelectric materials: Operation and performance in the pyroelectric camera tube. Ferroelectrics, 1976, 14, 719-721. https://doi.org/10.1080/00150197608236709

    Article  CAS  Google Scholar 

  25. S. Mendricks, X. Yue, T. Nikolajsen, R. Pankrath, H. Hesse, and D. Kip. Growth and photorefractive properties of doped Pb5Ge3O11 crystals and of (Pb1–xBax)5Ge3O11 solid solutions. Proc. SPIE, 1998, 3554, 205-215. https://doi.org/10.1117/12.318142

    Book  Google Scholar 

  26. X. Yue, S. Mendricks, Y. Hu, H. Hesse, and D. Kip. Photorefractive effect in doped Pb5Ge3O11 and in (Pb1–xBax)5Ge3O11. J. Appl. Phys., 1998, 83, 3473. https://doi.org/10.1063/1.366628

    Article  CAS  Google Scholar 

  27. S. Mendricks, X. Yue, R. Pankrath, H. Hesse, and D. Kip. Dynamic properties of multiple grating formation in doped and thermally treated lead germanate. Appl. Phys. B, 1999, 68, 887-891. https://doi.org/10.1007/s003400050719

    Article  CAS  Google Scholar 

  28. T. Li and S. T. Hsu. Ferroelectric Pb5Ge3O11 MFMOS capacitor for one transistor memory applications. Integr. Ferroelectr., 2001, 34, 55-63. https://doi.org/10.1080/10584580108012874

    Article  CAS  Google Scholar 

  29. T. Li, S. T. Hsu, B. Ulrich, and D. Evans. Comparison of MFMOS and MFOS one transistor memory devices. Integr. Ferroelectr., 2002, 48, 91-99. https://doi.org/10.1080/713718333

    Article  CAS  Google Scholar 

  30. A. A. Bush, K. E. Kamentsev, and R. F. Mamin. Transformation of dielectric properties and appearance of relaxation behavior in Pb5(Ge1–xSix)3O11 crystals. J. Exp. Theor. Phys., 2005, 100, 139-151. https://doi.org/10.1134/1.1866206

    Article  CAS  Google Scholar 

  31. A. V. Stepanov, A. A. Bush, and K. E. Kamentsev. Dielectric properties of crystals of (Pb1–xBax)5Ge3O11 solid solutions. Inorg. Mater., 2017, 53, 734-740. https://doi.org/10.1134/S0020168517070184

    Article  CAS  Google Scholar 

  32. A. A. Bush and Yu. N. Venevtsev. Vyrashchivanie, rentgenograficheskie i dielektricheskie issledovaniya monokristallov (Pb,Sr)5Ge3O11. (Growing, X-ray and dielectric studies of single crystals (Pb, Sr)5Ge3O11). Kristallografiya, 1979, 24(5), 1052-1055. [In Russian]

  33. J.-H. Kim, J.-B. Kim, K.-S. Lee, B.-C. Choi, J.-N. Kim, and S.-D. Lee. Sr2+ doping effect on the phase transition in Pb5Ge3O11 single crystals. Solid State Commun., 1993, 88(9), 727-730. https://doi.org/10.1016/0038-1098(93)90633-X

    Article  CAS  Google Scholar 

  34. K. Matsumoto, N. Kobayashi, K. Takada, K. Nakamatsu, H. Ichimuta, and K. Takahashi. Dielectric properties of ceramic lead germinate derivatives. Jpn. J. Appl. Phys., 1985, 24(S2), 466-468. https://doi.org/10.7567/JJAPS.24S2.466

    Article  CAS  Google Scholar 

  35. M. L. N. Goswani, R. N. P. Choudhary, and P. K. Mahapatra. Dielectric and pyroelectric properties of Pb5–xAxGe3O11 (A = Ca, Sr, Ba) ferroelectric ceramics. J. Mater. Sci. Lett., 1999, 18, 723-725. https://doi.org/10.1023/A:1006604531300

    Article  CAS  Google Scholar 

  36. Y. Hu, D. Kip, S. Mendricks, X. Yue, and E. Krätzig. Influence of oxidizing treatments on the photorefractive properties of ferroelectric lead germanate crystals. Ferroelecrrics, 2001, 256, 81-89. https://doi.org/10.1080/00150190108015975

    Article  CAS  Google Scholar 

  37. R. Viennois, I. V. Kityk, A. Majchrowski, J. Zmija, Z. Mierczyk, and P. Papet. Influence of Cr3+ dopants on the enhanced dielectric and nonlinear optical features of pyroelectric Pb5Ge3O11 single crystals. Mater. Chem. Phys., 2018, 213, 461-471. https://doi.org/10.1016/j.matchemphys.2018.04.025

    Article  CAS  Google Scholar 

  38. I. Jankowska-Sumara, P. Gwizd, A. Majchrowski, and A. Soszynski. Electrocaloric effect in pure and Cr doped lead germanate single crystals. Mater. Chem Phys., 2020, 242, 122494. https://doi.org/10.1016/j.matchemphys.2019.122494

    Article  CAS  Google Scholar 

  39. V. M. Duda, A. I. Baranov, A. S. Ermakov, and R. C. T. Slade. Influence of the defect structure on the electrical conductivity of Pb5Ge3O11 single crystals at high temperatures. Phys. Solid State, 2006, 48, 63-67. https://doi.org/10.1134/S1063783406010136

    Article  CAS  Google Scholar 

  40. A. A. Bush, K. E. Kamentsev, M. V. Provotorov, and T. N. Trushkova. Low-frequency relaxation processes in Pb5Ge3O11 ferroelectric crystals. Phys. Solid State, 2004, 46, 1722-1729. https://doi.org/10.1134/1.1799193

    Article  CAS  Google Scholar 

  41. H. J. Reyher, M. Pape, and N. Hausfeld. Photoactive Pb3+ host lattice ions in photorefractive Pb5Ge3O11 investigated by magnetic resonance techniques. J. Phys.: Condens. Matter, 2001, 13, 3767. https://doi.org/10.1088/0953-8984/13/16/307

    Article  CAS  Google Scholar 

  42. V. A. Vazhenin, A. N. Ivachev, M. Y. Artyomov, and A. P. Potapov. Photoactive lead ions in ferroelectric Pb5Ge3O11 and paramagnetic resonance. Phys. Solid State, 2011, 53, 1383-1387. https://doi.org/10.1134/S1063783411070304

    Article  CAS  Google Scholar 

  43. E. V. Peshikov, E. S. Tulyaganova, D. N. Mukhteremov, and L. A. Shuvalov. Radiatsionnye effekty v segnetoelektricheskikh kristallakh Pb5Ge3O11 i Gd2(MoO4)3 pri reaktornom obluchenii. Radiatsionno-stimulirovannye yavleniya v kislorodsoderzhashchikh kristallakh. (Radiation Effects in Pb5Ge3O11 and Gd2(MoO4)3 Ferroelectric Crystals During Reactor Irradiation. Radiation-Stimulated Phenomena in Oxygen-Containing Crystals). Tashkent, USSR: Fan, 1978. [In Russian]

  44. Yu. D. Khamchukov, V. V. Klubovich, and A. V. Myasoedov. Effect of irradiation of lead germanate by high-energy electrons and ions on its single-crystal structure. J. Appl. Spectrosc., 1996, 63, 148-152. https://doi.org/10.1007/BF02606716

    Article  Google Scholar 

  45. D. Kip, S. Mendricks, and P. Moretti. Optical waveguides in lead germanate formed by MeV proton and helium ion implantation. Phys. Status Solidi A, 1998, 166, R3. https://doi.org/10.1002/(SICI)1521-396X(199803)166:1%3CR3::AID-PSSA99993%3E3.0.CO;2-E

    Article  CAS  Google Scholar 

  46. S. T. Konobeevsky. Deistvie oblucheniya na materialy (The Effect of Irradiation on Materials). Moscow, Russia: Atomizdat, 1967. [In Russian]

  47. J. Deans and J. Vineyard. Radiatsionnye effekty v tverdykh telakh (Radiation Effects in Solids). Moscow, Russia: 1960. [In Russian]

  48. ICDD PDF 75-0685, 83-2007. Newtown Square, PA, USA: International Centre for Diffraction Data.

  49. R. D. Shannon and C. T. Prewitt. Effective ionic radii and crystal chemistry. J. Inorg. Nucl. Chem., 1970, 32, 1427-1441. https://doi.org/10.1016/0022-1902(70)80629-7

    Article  CAS  Google Scholar 

  50. APEX3. Madison, WI, USA: Bruker AXS Inc., 2014.

  51. G. M. Sheldrick. A short history of SHELX. Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, 64(1), 112-122. https://doi.org/10.1107/s0108767307043930

    Article  Google Scholar 

  52. G. M. Sheldrick. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053229614024218

    Article  Google Scholar 

  53. K. Momma and F. Izumi. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr., 2011, 44, 1272-1276. https://doi.org/10.1107/S0021889811038970

    Article  CAS  Google Scholar 

  54. A. I. Stash, S. A. Ivanov, A. A. Bush, V. I. Kozlov, and V. M. Boyko. Changes in the structural and dielectric characteristics of (Pb0.89Ba0.11)5Ge3O11 single crystals upon irradiation with high-energy electrons. Crystallogr. Rep., press.

  55. R. Gillespie and I. Hargittai. Model′ ottalkivaniya elektronnykh par valentnoi obolochki i stroenie molekul. (Model of Repulsion of Electron Pairs of the Valence Shell and the Structure of Molecules). Moscow, Russia: Mir, 1992. [In Russian]

  56. E. Parte. Nekotorye glavy strukturnoi neorganicheskoi khimii. (Some Chapters of Structural Inorganic Chemistry). Moscow, Russia: Mir, 1993. [In Russian]

  57. S. V. Krivovichev. Structural Mineralogy and Inorganic Crystal Chemistry. St. Petersburg, Russia: University Press, 2009.

  58. O. I. Siidra. Kristallokhimiya kislorodsoderzhashchikh mineralov i neorganicheskikh soedinenii nizko-valentnykh kationov talliya, svinca i vismuta. (Crystal Chemistry of Oxygen-Containing Minerals and Inorganic Compounds of Low-Valent Cations of Thallium, Lead and Bismuth). Extended Abstract of Doctoral (Geol.-Mineral.) Dissertation. St. Petersburg, Russia: St. Petersburg State University, 2016. [In Russian]

  59. S. F. Matar and J. Galy. Coherent view of crystal chemistry and ab initio analyses of Pb(II) and Bi(III) lone pair in square planar coordination. Solid State Chem., 2015, 43, 82-97. https://doi.org/10.1016/j.progsolidstchem.2015.05.001

    Article  CAS  Google Scholar 

  60. R. D. Shannon and C. T. Prewitt. Effective ionic radii in oxides and fluorides. Acta Crystallogr., Sect. B, 1969, 25, 925-946. https://doi.org/10.1107/S0567740869003220

    Article  CAS  Google Scholar 

Download references

Funding

The part of work conducted in the RTU MIREA was funded by the Ministry of Science and Higher Education of the Russian Federation within the State Assignment (project FSFZ-2023-0005) and was performed using the equipment of the Common Use Center of RTU MIREA funded by the Ministry of Science and Higher Education of the Russian Federation within the Agreement dated 01.09.2021 No. 075-15-2021-689.

The research by S. A. Ivanov was funded by the Russian Science Foundation (project 22-13-00122).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Stash.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 6, 112367.https://doi.org/10.26902/JSC_id112367

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stash, A.I., Ivanov, S.A., Bush, A.A. et al. Evolution of the Crystal Structure and the Dielectric Properties of (Pb0.86Sr0.14)5Ge3O11 Single Crystals under High-Energy Electron Irradiation. J Struct Chem 64, 1081–1097 (2023). https://doi.org/10.1134/S0022476623060112

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476623060112

Keywords

Navigation