Skip to main content
Log in

Effect of High-Energy Electron Irradiation on the Structural, Dielectric, and Nonlinear Optical Properties of Single Crystals of Pb5(Ge1–хSix)3O11 (0 ≤ x ≤ 0.55) Solid Solutions

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Stoichiometric single crystals of Pb5(Ge1–хSix)3O11 solid solutions (0 ≤ x ≤ 0.55) are obtained by slow cooling of 5PbO·3(1–y)GeO2·3ySiO2 melts. The chemical analysis confirms their cation and anion stoichiometry. The effect of their high-energy (10 MeV) electron irradiation with fluences from 0.1·1018 e/cm2 to 4.39·1018 e/cm2 on the structural, ferroelectric, and nonlinear optical characteristics of the crystals is studied for the first time. The dependence of crystals on concentrations and fluences is detected. According to the date of dielectric spectroscopy and second harmonic generation of laser radiation, the doping with Si causes a systematic shift of Tc to low temperatures, a decrease in the peak value of the dielectric permittivity, and a noticeable phase transition smearing with transforming to the zelaxor ferrollectric state of x = 0.35. According to the structural studies of initial and irradiared, Pb5(Ge1–xSix)3O11 crystals, they retain the structural perfectness without any signs of amorphization. Structural distortions of Pb5(Ge1–xSix)3O11 do not significantly depend on the fluence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

REFERENCES

  1. H. Iwasaki, K. Sugii, T. Yamada, and N. Niizeki. 5PbO3GeO2 crystal; a new ferroelectric. Appl. Phys. Lett., 1971, 18(10), 444/445. https://doi.org/10.1063/1.1653487

    Article  CAS  Google Scholar 

  2. S. Nanamatsu, H. Sugiyama, K. Doi, and Y. Kondo. Ferroelectricity in Pb5Ge3O11. J. Phys. Soc. Jpn., 1971, 31(2), 616/617. https://doi.org/10.1143/jpsj.31.616

    Article  CAS  Google Scholar 

  3. H. Iwasaki, S. Miyazawa, H. Koizumi, K. Sugii, and N. Niizeki. Ferroelectric and optical properties of Pb5Ge3O11 and its isomorphous compound Pb5Ge2SiO11. J. Appl. Phys., 1972, 43(12), 4907-4915. https://doi.org/10.1063/1.1661044

    Article  CAS  Google Scholar 

  4. M. I. Kay, R. E. Newnham, and R. W. Wolfe. The crystal structure of the ferroelectric phase of Pb5Ge3O11. Ferroelectrics, 1975, 9(1), 1-6. https://doi.org/10.1080/00150197508240073

    Article  CAS  Google Scholar 

  5. Y. Iwata. Neutron diffraction study of the structure of paraelectric phase of Pb5Ge3O11. J. Phys. Soc. Jpn., 1977, 43(3), 961-967. https://doi.org/10.1143/jpsj.43.961

    Article  CAS  Google Scholar 

  6. A. A. Bush and Yu. N. Venevtsev. Monokristally s segnetoelektricheskimi i rodstvennymi svoistvami v sisteme PbO–GeO2 i vozmozhnye oblasti ikh primeneniya (Monocrystals with Ferroelectric and Related Properties in the PbO–GeO2 System and Possible Ranges of Their Application). Moscow, Russia: NIITEKhIM, 1981. [In Russian]

  7. G. R. Jones, N. Shaw, and A. W. Vere. Pyroelectric properties of lead germanate. Electron. Lett., 1972, 8(14), 345. https://doi.org/10.1049/el:19720252

    Article  Google Scholar 

  8. R. Watton, C. Smith, and G. R. Jones. Pyroelectric materials: Operation and performance in the pyroelectric camera tube. Ferroelectrics, 1976, 14(1), 719-721. https://doi.org/10.1080/00150197608236709

    Article  CAS  Google Scholar 

  9. S. Mendricks, X. Yue, T. Nikolajsen, R. Pankrath, H. Hesse, and D. Kip. Growth and photorefractive properties of doped Pb5Ge3O11 crystals and of (Pb1–xBax)5Ge3O11 solid solutions. / Eds. P. Ye, T. Shimura, and R. R. Neurgaonkar. Proc. SPIE, 1998, 3554, 205-215. https://doi.org/10.1117/12.318142

    Book  Google Scholar 

  10. H. J. Reyher, M. Pape, and N. Hausfeld. Photoactive Pb3+ host lattice ions in photorefractive Pb5Ge3O11 investigated by magnetic resonance techniques. J. Phys. Condens. Matter, 2001, 13(16), 3767-3778. https://doi.org/10.1088/0953-8984/13/16/307

    Article  CAS  Google Scholar 

  11. T. Li and S. T. Hsu. Ferroelectric Pb5Ge3O11 MFMOS capacitor for one transistor memory applications. Integr. Ferroelectr., 2001, 34(1-4), 55-63. https://doi.org/10.1080/10584580108012874

    Article  CAS  Google Scholar 

  12. T. Li, S.T. Hsu, B. Ulrich, and D. Evans. Comparison of MFMOS and MFOS one transistor memory devices. Integr. Ferroelectr., 2002, 48(1), 91-99. https://doi.org/10.1080/713718333

    Article  CAS  Google Scholar 

  13. P. A. Fleury and K. B. Lyons. Central-peak dynamics at the ferroelectric transition in lead germanate. Phys. Rev. Lett., 1976, 37(16), 1088-1091. https://doi.org/10.1103/physrevlett.37.1088

    Article  CAS  Google Scholar 

  14. D. J. Lockwood, J. W. Arthur, W. Taylor, and T. J. Hosea. Observation of a central peak in lead germanite by light scattering. Solid State Commun., 1976, 20(7), 703-707. https://doi.org/10.1016/0038-1098(76)90751-1

    Article  CAS  Google Scholar 

  15. D. J. Lockwood, T. J. Hosea, and W. Taylor. The complete Raman spectrum of paraelectric and ferroelectric lead germanate. J. Phys. C: Solid State Phys., 1980, 13(8), 1539-1553. https://doi.org/10.1088/0022-3719/13/8/023

    Article  CAS  Google Scholar 

  16. V. S. Gorelik and A. Y. Pyatyshev. Raman scattering from the effective soft mode in lead germanate crystal. J. Raman Spectrosc., 2020, 51(6), 969-977. https://doi.org/10.1002/jrs.5854

    Article  CAS  Google Scholar 

  17. A. V. Stepanov, A. A. Bush, and K. E. Kamentsev. Dielectric properties of crystals of (Pb1–xBax)5Ge3O11 solid solutions. Inorg. Mater., 2017, 53(7), 734-740. https://doi.org/10.1134/s0020168517070184

    Article  CAS  Google Scholar 

  18. R. Viennois, I. V. Kityk, A. Majchrowski, J. Zmija, Z. Mierczyk, and P. Papet. Influence of Cr3+ doping on the enhanced dielectric and nonlinear optical features of pyroelectric Pb5Ge3O11 single crystals. Mater. Chem. Phys., 2018, 213, 461-471. https://doi.org/10.1016/j.matchemphys.2018.04.025

    Article  CAS  Google Scholar 

  19. U. Bachulska, J. Jankowska-Sumara, A. Majchrowski, M. Chrunik, D. Zasada, and A. Soszyński. Thermal and dielectric properties of ferroelectric lead germanate single crystals doped with chromium ions (Pb5Ge3O11:Cr3+). Phase Transitions, 2018, 91(9/10), 923-931. https://doi.org/10.1080/01411594.2018.1507032

    Article  CAS  Google Scholar 

  20. C. E. Avalos, B. J. Walder, J. Viger-Gravel, A. Magrez, and L. Emsley. Chemical exchange at the ferroelectric phase transition of lead germanate revealed by solid state 207Pb nuclear magnetic resonance. Phys. Chem. Chem. Phys., 2019, 21(3), 1100-1109. https://doi.org/10.1039/c8cp06507a

    Article  CAS  PubMed  Google Scholar 

  21. I. Jankowska-Sumara, P. Gwizd, A. Majchrowski, and A. Soszyński. Electrocaloric effect in pure and Cr doped lead germanate single crystals. Mater. Chem. Phys., 2020, 242, 122494. https://doi.org/10.1016/j.matchemphys.2019.122494

    Article  CAS  Google Scholar 

  22. V. A. Vazhenin, A. P. Potapov, A. V. Fokin, G. S. Shakurov, A. D. Gorlov, and M. Y. Artyomov. Trigonal Cr3+ centers in ferroelectric lead germanate. Opt. Mater., 2020, 106, 109855. https://doi.org/10.1016/j.optmat.2020.109855

    Article  CAS  Google Scholar 

  23. D. I. Adamenko and R. O. Vlokh. Critical exponents of the order parameter of diffuse ferroelectric phase transitions in the solid solutions based on lead germanate: Studies of optical rotation. Condens. Matter Phys., 2022, 25(4), 43703. https://doi.org/10.5488/cmp.25.43703

    Article  CAS  Google Scholar 

  24. M. Krupska-Klimczak, I. Jankowska-Sumara, P. Gwizd, M. Koralewski, and A. Soszyński. Composition-related dielectric, ferroelectric and electrocaloric properties of Pb5Ge3O11 single crystals modified by Ba ions. Materials, 2023, 16(1), 413. https://doi.org/10.3390/ma16010413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. W. Eysel, R. W. Wolfe, and R. E. Newnham. Pb5(Ge,Si)3O11 ferroelectrics. J. Am. Ceram. Soc., 1973, 56(4), 185-188. https://doi.org/10.1111/j.1151-2916.1973.tb12452.x

    Article  CAS  Google Scholar 

  26. S. Y. Stefanovich, V. V. Chechkin, V. D. Sal’nikov, and Yu. N. Venevtsev. Optic second harmonic generation and pyroeffect in single crystals of Pb(Ge1–xSix)2O7. Sov. Phys. - Crystallogr., 1976, 21, 300.

  27. A. G. Belous, V. V. Demyanov, and Yu. N. Venevtsev. Dielectric spectra of crystals of lead germanate-silicate solid solutions. Sov. Phys. - Solid State, 1977, 19, 1578.

  28. W. Muller-Lierheim, W. Gebhardt, H. H. Otto, and G. Busse. The phase transformations in Pb5Ge3O11 and in the Pb5Ge3-xSixO11 mixed crystals system. Ferroelectrics, 1978, 20(1), 299-301. https://doi.org/10.1080/00150197808237243

    Article  Google Scholar 

  29. E. V. Sinyakov, V. V. Gene, and A. Ya. Kreicherek. Dielectric properties of single crystals of Pb5(Ge1–xSix)3O11 solid solutions. Sov. Phys. - Solid State, 1979, 21, 709.

  30. M. Połomska, M. Malinowski, and H. H. Otto. Dielectric and electric study of Pb5(Ge, Si)3O11 single crystals. Phys. Status Solidi, 1979, 56(1), 335-339. https://doi.org/10.1002/pssa.2210560137

    Article  Google Scholar 

  31. K. Takahashi, L. H. Hardy, R. E. Newnham, and L. E. Cross. Proc. 2nd Meeting of International Symposium on Application of Ferroelectrics, Minneapolis, Minnesota, June 13-15, 1979. IEEE, 1979, 257.

  32. A. A. Bush and Yu. N. Venevtsev. New data from an investigation of ferroelectric crystals of solid solutions Pb5(Ge1–xSix)3O11. Sov. Phys. Crystallogr., 1981, 26,198.

  33. K. Takahashi, S. Shirasaki, K. Takamatsu, N. Kobayasm, Y. Mitarai, and K. Kakegawa. Pyroelectricity of preferably-oriented Pb5Ge3–xSixO11. Thick films prepared by the printing technique. Jpn. J. Appl. Phys., 1983, 22(S2), 73. https://doi.org/10.7567/jjaps.22s2.73

    Article  CAS  Google Scholar 

  34. A. A. Bush and E. A. Popova. Heat capacity of the Pb5(Ge1–xSix)3O11 ferroelectric system. Phys. Solid State, 2004, 46(5), 902-907. https://doi.org/10.1134/1.1744969

    Article  CAS  Google Scholar 

  35. A. A. Bush, K. E. Kamentsev, and R. F. Mamin. Transformation of dielectric properties and appearance of relaxation behavior in Pb5(Ge1–xSix)3O11 crystals. J. Exp. Theor. Phys., 2005, 100(1), 139-151. https://doi.org/10.1134/1.1866206

    Article  CAS  Google Scholar 

  36. R. N. P. Choudhary, N. K. Misra, and P. S. Chidambaram. Structural and dielectric properties of Pb5(Ge, Si)3O11. Pramana, 1992, 38(4), 347-353. https://doi.org/10.1007/bf02875381

    Article  CAS  Google Scholar 

  37. M. Kh. Rabadanov, Yu. V. Shaldin, A. A. Bush, and A. Pietraszko. Pb5(Ge1–xSix)3O11 (x = 0.0, 0.30, 0.42) Ferroelectrics: A feature of atomic structure. Nano- Microsyst. Technol. 2006, 10, 6.

  38. V. Bilyk, E. Mishina, N. Sherstyuk, A. Bush, A. Ovchinnikov, and M. Agranat. Transient polarization reversal using an intense THz pulse in silicon-doped lead germanate. Phys. Status Solidi RRL, 2021, 15(1), 2000460. https://doi.org/10.1002/pssr.202000460

    Article  CAS  Google Scholar 

  39. W. P. Clark. Transition metal nitrides, nitridometalates and carbodiimides, as well as strontium acetonitriletriides: Chemical, structural and physical characteristics: ScD Dissertation. Stuttgart, Germany: Institut für Anorganische Chemie der Universität Stuttgart, 2019.

  40. R. F. Mamin. To the theory of phase transitions in relaxors. Phys. Solid State, 2001, 43(7), 1314-1319. https://doi.org/10.1134/1.1386471

    Article  CAS  Google Scholar 

  41. R. F. Mamin. Phenomenological model of relaxors. Bull. Russ. Acad. Sci.: Phys., 2003, 67, 1157.

  42. APEX3. Madison, WI, USA: Bruker AXS Inc., 2014.

  43. G. M. Sheldrick. A short history of SHELX. Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, 64(1), 112-122. https://doi.org/10.1107/s0108767307043930

    Article  Google Scholar 

  44. G. M. Sheldrick. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053229614024218

    Article  Google Scholar 

  45. E. V. Kolontsova. Radiatsionno-indutsirovannye sostoyaniya v kristallakh s ionno-kovalentnymi svyazyami (Radiation-induced states in crystals with ionic-covalent bonds). Usp. Fiz. Nauk, 1987, 151(1), 149. https://doi.org/10.3367/ufnr.0151.198701g.0149 [In Russian]

    Article  CAS  Google Scholar 

  46. A. I. Stash, S. A. Ivanov, V. M. Boiko, V. S. Ermakov, S. Y. Stefanovich, and A. V. Mosunov. Radiation-induced changes in the structure and ferroelectric properties of Pb5Ge3O11 single crystals. J. Struct. Chem., 2021, 62(12), 1880-1895. https://doi.org/10.1134/s0022476621120088

    Article  CAS  Google Scholar 

  47. S. A. Ivanov, A. I. Stash, and T. A. Sorokin. New investigations of the crystal structure of lead germanate Pb5Ge3O11. Crystallogr. Rep., 2022, 67(3), 334-347. https://doi.org/10.1134/s1063774522030099

    Article  CAS  Google Scholar 

  48. W. Cao. Defects in Ferroelectrics. In: Disorder and Strain-Induced Complexity in Functional Materials / Eds. T. Kakeshita, T. Fukuda, A. Saxena, and A. Planes: Springer Series in Materials Science, Vol. 148. Berlin, Heidelberg: Springer, 2012, 113-134. https://doi.org/10.1007/978-3-642-20943-7_7

    Chapter  Google Scholar 

  49. S. T. Konobeevskii. Deistvie oblucheniya na materialy (Effect of Irradiation on Materials). Moscow: Atomizdat, 1967. [In Russian]

  50. G. J. Dienes and G. H. Vineyard. Radiation Effects in Solids. New York: Interscience, 1957.

  51. Y. V. Trushin. Theory of radiation processes in crystals. Sov. Phys. Tech. Phys., 1991, 36, 1236.

  52. G. S. Was. Fundamentals of Radiation Materials Science. Heidelberg, Germany: Springer, 2007. https://doi.org/10.1007/978-3-540-49472-0

    Book  Google Scholar 

  53. R. E. Stoller. Primary Radiation Damage Formation. In: Comprehensive Nuclear Materials / Ed. R. J. M. Konings. Elsevier, 2012, 293-332. https://doi.org/10.1016/b978-0-08-056033-5.00027-6

    Chapter  Google Scholar 

  54. A. Holmes-Siedle and L. Adams. Handbook of Radiation Effects. New York: Oxford Univ. Press, 1993.

  55. S. A. Ivanov and A. I. Stash. Influence of neutron irradiation on the characteristics of phase transitions in multifunctional materials with a perovskite structure (A review). Russ. J. Inorg. Chem., 2020, 65(12), 1789-1819. https://doi.org/10.1134/s0036023620120049

    Article  CAS  Google Scholar 

  56. E. V. Peshikov. Radiatsionnye effekty v segnetoelektrikakh (Radiation Effects in Ferroelectrics). Tashkent: Fan, 1986.[In Russian]

Download references

Funding

The work was supported by RFBR (grant No. 20-03-00337).

In MIREA - Russian Technological University, the work was supported by the Ministry of Education and Science of the Russian Federation within State Assignment FSFZ-2022-0007 for organizing youth laboratories. The facilities of the Multi-Access Center of the MIREA - Russian Technological University were used, which was supported by the Ministry of Education and Science of the Russian Federation within Contract No. 075-15-2021-689, September 01, 2021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Stash.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 3, 108003.https://doi.org/10.26902/JSC_id108003

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, S.A., Stash, A.I., Bush, A.A. et al. Effect of High-Energy Electron Irradiation on the Structural, Dielectric, and Nonlinear Optical Properties of Single Crystals of Pb5(Ge1–хSix)3O11 (0 ≤ x ≤ 0.55) Solid Solutions. J Struct Chem 64, 493–518 (2023). https://doi.org/10.1134/S0022476623030149

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476623030149

Keywords

Navigation