Skip to main content
Log in

Coordination Numbers and Critical Topology of Hydrocarbons with Z″ = 2

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

A statistical analysis of molecular coordination numbers for the crystal structures of 316 bisystem hydrocarbons with Z″ = 2 is carried out. The relationship between coordination numbers, the topological type of networks, and the intermolecular interaction energy calculated by the 6-exp method is studied. It is found that critical networks most often do not correspond to the criteria of minimum networks, i.e. a set of contacts generating the crystal structure is redundant for the structural class. The geometric and energy criteria of the critical network are shown to yield inconsistent results in the structures of bisystem hydrocarbons more often than in monosystem ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. P. Brock. Acta Crystallogr., Sect. B, 2016, 72, 807.

    CAS  Google Scholar 

  2. C. R. Groom, I. J. Bruno, M. P. Lightfoot, and S. C. Ward. Acta Crystallogr., Sect. B, 2016, 72, 171.

    CAS  Google Scholar 

  3. K. M. Steed and J. W. Steed. Chem. Rev., 2015, 115, 2895.

    CAS  PubMed  Google Scholar 

  4. T. Steiner. Acta Crystallogr., Sect. B, 2000, 56, 673.

    CAS  PubMed  Google Scholar 

  5. A. D. Bond. CrystEngComm, 2008, 10, 411.

    CAS  Google Scholar 

  6. J. Bernshtein. Polymorphism in Molecular Crystals. IUCr, 2002.

  7. N. Yu. Chernikova. Tambov Univ. Rep. Ser.: Nat. Tech. Sci., 2011, 16, 573.

    Google Scholar 

  8. B. P. van Eijck and J. Kroon. Acta Crystallogr., Sect. B, 2000, 56, 535.

    PubMed  Google Scholar 

  9. R. Taylor, J. C. Cole, and C. R. Groom. Cryst. Growth Des., 2016, 16, 2988.

    CAS  Google Scholar 

  10. A. M. Banaru. Moscow Univ. Chem. Bull., 2009, 64, 80.

    Google Scholar 

  11. A. M. Banaru and D. M. Gridin. J. Struct. Chem., 2019, 60, 1885.

    CAS  Google Scholar 

  12. A. M. Banaru. Moscow Univ. Chem. Bull., 2019, 74, 101.

    Google Scholar 

  13. S. V. Borisov, N. V. Pervukhina, and S. A. Magarill. J. Struct. Chem., 2018, 59, 114.

    CAS  Google Scholar 

  14. O. Carugo, O. A. Blatova, E. O. Medrish, V. A. Blatov, and D. M. Proserpio. Sci. Rep., 2017, 7, 1.

    CAS  Google Scholar 

  15. V. A. Blatov. Crystallogr. Rev., 2004, 10, 249.

    CAS  Google Scholar 

  16. J. J. McKinnon, A. S. Mitchell, and M. A. Spackman. Chem. — Eur. J., 1998, 4, 2136.

    CAS  Google Scholar 

  17. G. Filippini and A. Gavezzotti. Acta Crystallogr., Sect. B, 1993, 49, 868.

    Google Scholar 

  18. M. A. Prokaeva, I. A. Baburin, and V. N. Serezhkin. J. Struct. Chem., 2009, 50, 867.

    CAS  Google Scholar 

  19. Yu. V. Zefirov and P. M. Zorky. Russ. Chem. Rev., 1995, 64, 415.

    Google Scholar 

  20. A. V. Maleev, A. A. Gevorgyan, and K. A. Potekhin. J. Struct. Chem., 2018, 59, 455.

    CAS  Google Scholar 

  21. V. A. Blatov, A. P. Shevchenko, and D. M. Proserpio. Cryst. Growth Des., 2014, 14, 3576.

    CAS  Google Scholar 

  22. M. O’Keeffe, M. A. Peskov, S. J. Ramsden, and O. M. Yaghi. Acc. Chem. Res., 2008, 41, 1782.

    Google Scholar 

  23. C. Bonneau, O. Delgado-Friedrichs, M. O’Keeffe, and O. M. Yaghi. Acta Crystallogr., Sect. A, 2004, 60, 517.

    PubMed  Google Scholar 

  24. A. M. Banaru and D. M. Gridin. Moscow Univ. Chem. Bull., 2019, 74, 265.

    Google Scholar 

  25. V. A. Blatov. Acta Crystallogr., Sect. A, 2007, A63, 329.

    Google Scholar 

  26. A. M. Banaru. Crystallogr. Rep., 2019, 64, 847.

    CAS  Google Scholar 

  27. A. Banaru and A. Kochnev. Stud. Univ. Babes-Bolyai Chem., 2017, 62, 121.

    CAS  Google Scholar 

  28. C. F. Mackenzie, P. R. Spackman, D. Jayatilaka, and M. A. Spackman. lUCrJ, 2017, 4, 575.

    CAS  Google Scholar 

  29. O. Delgado-Friedrichs and M. O’Keeffe. Acta Crystallogr., Sect. A, 2003, 59, 351.

    PubMed  Google Scholar 

  30. R. Boese, D. Bläser, W. E. Billups, M. M. Haley, A. H. Maulitz, D. L. Mohler, and K. P. C. Vollhardt. Angew. Chem., Int. Ed. Eng., 1994, 33, 313.

    Google Scholar 

  31. J. S. A. M. de Boer, B. O. Loopstra, and C. H. Stam. Recl. Trav. Chim. Pays-Bas, 1987, 106, 537.

    CAS  Google Scholar 

  32. L. Fluorures, U. Maine, I. L. Langevin, A. Martyrs, and G. Cedex. J. Solid State Chem., 1992, 6, 227.

    Google Scholar 

  33. A. D. Bond and, J. E. Davies. Z. Kristallogr. — Cryst. Mater., 2014, 229, 661.

    CAS  Google Scholar 

  34. S. K. Nayak, R. Sathishkumar, and T. N. G. Row. CrystEngComm, 2010, 12, 3112.

    CAS  Google Scholar 

  35. V. K. Belsky, O. N. Zorkaya, and P. M. Zorky. Acta Crystallogr., Sect. A, 1995, 51, 473.

    Google Scholar 

  36. J. S. A. M. de Boer and C. H. Stam. Recl. Trav. Chim. Pays-Bas, 1993, 112, 635.

    CAS  Google Scholar 

  37. B. Xia, K. Wang, Q.-L. Wang, Y. Ma, Y.-Z. Tong, and D.-Z. Liao. CrystEngComm, 2017, 19, 811.

    CAS  Google Scholar 

  38. K. Dziubek, M. Podsiadło, and A. Katrusiak. J. Am. Chem. Soc., 2007, 129, 12620.

    CAS  PubMed  Google Scholar 

  39. P. M. Zorky. J. Mol. Struct., 1996, 374, 9.

    CAS  Google Scholar 

  40. V. A. Blatov. J. Struct. Chem., 2009, 50, S160.

    CAS  Google Scholar 

  41. V. A. Blatov and D. M. Proserpio. In: Modern Methods of Crystal Structure Prediction. Wiley Online Books, 2010, 1.

  42. M. S. Khan, O. Sulaiman, R. Hashim, M. Hemamalini, and H.-K. Fun. Acta Crystallogr., Sect. E, 2011, 67, o1368.

    CAS  Google Scholar 

  43. M. K. J. ter Wiel, R. A. van Delden, A. Meetsma, and B. L. Feringa. J. Am. Chem. Soc., 2003, 125, 15076.

    CAS  PubMed  Google Scholar 

  44. L. Eshdat, E. Shabtai, S. A. Saleh, T. Sternfeld, M. Saito, Y. Okato, and M. Rabinovitz. J. Org. Chem., 1999, 64, 3532.

    CAS  PubMed  Google Scholar 

  45. Y. Kirchwehm, A. Damme, T. Kupfer, H. Braunschweig, and A. Krueger. Chem. Commun., 2012, 48, 1502.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Banaru.

Ethics declarations

The authors declare that they have no conflict of interests.

Additional information

Russian Text © The Author(s), 2020, published in Zhurnal Strukturnoi Khimii, 2020, Vol. 61, No. 5, pp. 784–798.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gridin, D.M., Banaru, A.M. Coordination Numbers and Critical Topology of Hydrocarbons with Z″ = 2. J Struct Chem 61, 742–756 (2020). https://doi.org/10.1134/S0022476620050108

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476620050108

Keywords

Navigation