Skip to main content
Log in

Nitroxyls and PELDOR: Nitroxyl radicals in pulsed electron-electron double resonance spectroscopy

  • Current NMR and EPR Spectroscopy Methods in Structural Chemistry of Complex Crystals, Glasses, Composites, and Biological Membranes
  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The review considers the main propositions of PELDOR theory. It is shown how from the analysis of PELDOR time traces it is possible to find the parameters of a spin system such as the distance and the distance distribution (spectrum), number of spins in aggregates and complexes, exchange integral and how to separate for the following analysis the inter- and intramolecular contributions to the general dipole interaction. Examples of PELDOR application in the studies of the spatial distribution of nitroxyl radicals, the charge effect of dipolar interacting nitroxyls on their spatial distribution are given and the results of the determination of distances and the spectrum of distances for nitroxyl bi-, tri-, and tetraradicals are presented. The works on nitroxyl radicals in which the orientation selectivity effect, spin exchange, and conformational properties of the radicals are examined by the PELDOR method are analyzed. The studies of the structure of paramagnetic ion-nitroxyl radical pairs and the PELDOR data on nitroxyls at high frequencies (high fields) are considered. The last section of the review is devoted to the works examining the properties such as the molecular flexibility of oligomers and supramolecules contains nitroxyl radicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. L. Buchachenko, Stable Radicals [in Russian], Izd. AN SSSR, Moscow (1963).

    Google Scholar 

  2. V. A. Rodionov and È. G. Rozantsev, Long-Living Radicals [in Russian], Nauka, Moscow (1972).

    Google Scholar 

  3. Ya. S. Lebedev and V. I. Muromtsev, EPR and Relaxation of Stabilized Radicals [in Russian], Khimiya, Moscow (1972).

    Google Scholar 

  4. A. L. Buchachenko and A. N. Vasserman, Stable Radicals [in Russian], Khimiia, Moscow (1973).

    Google Scholar 

  5. V. N., Parmon A. I. Kokorin, and G. M. Zhidomirov, Stable Radicals [in Russian], Nauka, Moscow (1980).

    Google Scholar 

  6. A. N. Vasserman and A. L. Kovarskii, Spin Labels and Probes in Physical Chemistry of Polymers [in Russian], Nauka, Moscow (1986).

    Google Scholar 

  7. A. I. Kokorin (ed.), in: Nitroxides Theory, Experiment and Applications, Intech Publ. (2012).

    Google Scholar 

  8. K. M. Salikhov, A. G. Semenov, and Yu. D. Tsvetkov, Electron Spin Echo and Its Application [in Russian], Nauka, Novosibirsk (1976).

    Google Scholar 

  9. S. A. Dikanov and Yu. D. Tsvetkov, Electron Spin Echo Envelope Modulation (ESEEM) Spectroscopy, CRC Press, Boca Raton (1992).

    Google Scholar 

  10. A. D. Milov, K. M. Salikhov, and M. D. Shchirov, Fiz. Tv. Tela., 23, 975 (1981).

    CAS  Google Scholar 

  11. Yu. D. Tsvetkov and Yu. A. Grishin, Prib. Tekhn. Èksperim., 5, 5–28 (2009).

    Google Scholar 

  12. A. B. Ponomarev, A. D. Milov, and Yu. D. Tsvetkov, J. Struct. Chem., 25, 51 (1984).

    Google Scholar 

  13. G. W. Reginsson and O. Schiemann, Biochem. J., 434, 353–363 (2011).

    Article  CAS  Google Scholar 

  14. Yu. D. Tsvetkov, A. D. Milov, and A. G. Maryasov, Usp. Khim., 6, 515–551 (2008).

    Google Scholar 

  15. A. D. Milov, A. G. Maryasov, and Yu. D. Tsvetkov, Appl. Magn. Res., 15, 107 (1998).

    Article  CAS  Google Scholar 

  16. A. G. Maryasov and Yu. D. Tsvetkov, Appl. Magn. Res., 18, 583 (2000).

    Article  Google Scholar 

  17. A. N. Tikhonov and V. Y. Arsenin, Solutions of Ill-Poset Problems, Wiley, New York (1977).

    Google Scholar 

  18. M. K. Bowman, A. G. Maryasov, N. Kim, et al., Appl. Magn. Res., 26, 23 (2004).

    Article  CAS  Google Scholar 

  19. G. Jeschke, A. Koch, U. Jonas, et al., J. Magn. Res., 155, 72 (2002).

    Article  CAS  Google Scholar 

  20. A. D. Milov, Yu. D. Tsvetkov, F. Formaggio, et al., J. Phys. Chem. B, 107, 13719 (2003).

    Article  CAS  Google Scholar 

  21. G. Jeschke, G. Panek, A. Godt, et al., Appl. Magn. Res., 26, 223 (2004).

    Article  CAS  Google Scholar 

  22. Y.-W. Chiang, P. P. Borbat, and J. H. Freed, J. Magn. Res., 172, 279 (2005).

    Article  CAS  Google Scholar 

  23. A. D. Milov, R.I. Samoilova, Yu. D. Tsvetkov, V. A. Gusev, F. Formaggio, M. Crisma, C. Toniolo, and J. Raap, Appl. Magn. Res., 23, 81 (2002).

    Article  CAS  Google Scholar 

  24. A. D. Milov, A. G. Maryasov, Yu. D. Tsvetkov, and J. Raap, Chem. Phys. Lett., 303, 135 (1999).

    Article  CAS  Google Scholar 

  25. A. D. Milov and Yu. D. Tsvetkov, Appl. Magn. Res., 18, 217 (2000).

    Article  CAS  Google Scholar 

  26. R. G. Pearson and T. Buch, J. Chem. Phys., 36, 1277–1282 (1962).

    Article  CAS  Google Scholar 

  27. M. T. Jones, J. Chem. Phys., 38, 2892–2895 (1963).

    Article  CAS  Google Scholar 

  28. P. Debye and E. Hückel, Physik. Zeitschr., 24, No. 9, 185–206 (1923).

    CAS  Google Scholar 

  29. L. V. Kulik, Yu. A. Grishin, S. A. Dzuba, I. A. Grigoryev, S. V. Klyatskaya, S. F. Vasilevsky, and Yu. D. Tsvetkov, J. Magn. Res., 157, 1 (2002).

    Article  Google Scholar 

  30. A. D. Milov, B. D. Naumov, and Yu. D. Tsvetkov, Appl. Magn. Res., 26, 587 (2004).

    Article  CAS  Google Scholar 

  31. R. G. Larsen and D. J. Singel, J. Chem. Phys., 98, 5134 (1993).

    Article  CAS  Google Scholar 

  32. V. Pfannebecker, H. Klos, M. Hubrich, T. Volkmer, A. Heuer, U. Wiesner, and H. W. Spiess, J. Phys. Chem., 100, 13428 (1996).

    Article  CAS  Google Scholar 

  33. M. Pannier, S. Veit, A. Godt, G. Jeschke, and H. W. Spiess, J. Magn. Res., 142, 331 (2000).

    Article  CAS  Google Scholar 

  34. A. Weber, O. Schiemann, B. Bode, and T. F. Prisner, J. Magn. Res., 157, 277 (2002).

    Article  CAS  Google Scholar 

  35. A. D. Milov, A. B. Ponomarev, and Yu. D. Tsvetkov, Chem. Phys. Lett., 110, 67 (1984).

    Article  CAS  Google Scholar 

  36. G. Jeschke, M. Pannier, A. Godt, and H. W. Spiess, Chem. Phys. Lett., 331, 243 (2000).

    Article  CAS  Google Scholar 

  37. G. Jeschke, A. Bender, H. Paulsen, H. Zimmermann, and A. Godt, J. Magn. Res., 169, 1 (2004).

    Article  CAS  Google Scholar 

  38. R. E. Martin, M. Pannier, F. Diederich, V. Gramlich, M. Hubrich, and H. Spiess, Angev. Chem., Int. Ed., 37, 2834 (1998).

    CAS  Google Scholar 

  39. G. Jeschke, M. Pannier and H. W. Spiess, In Biological Magnetic Resance, 19, (Distance Measurements in Biological Systems by EPR), L. J. Berliner, S. S. Eaton, and G. R. Eaton (eds.), Kluwer/Plenum, New York (2000).

  40. B. D. Bode, D. Margraf, J. Plackmeyer, G. Dürner, T. F. Prisner, and O. Schiemann, J. Am. Chem. Soc., 129, 6736 (2007).

    Article  CAS  Google Scholar 

  41. G. Jeschke, M. Sajid, M. Schulte, and A. Godt, Phys. Chem. Chem. Phys., 11, 6580–6591 (2009).

    Article  CAS  Google Scholar 

  42. A. Godt, C. Franzen, S. Veit, V. Enkelmann, M. Pannier, and G. Jeschke, J. Org. Chem., 65, 7575–7582 (2000).

    Article  CAS  Google Scholar 

  43. A. Savitsky, A, Dubinskii M. Flores, W. Lubitz, and K. Möbius, J. Phys. Chem. B, 111, 6245 (2007).

    Article  CAS  Google Scholar 

  44. A. Marko, D. Margraf, H. Yu, Y. Mu, G. Stock, and T. Prisner, J. Chem. Phys., 130, 064102 (2009).

    Article  CAS  Google Scholar 

  45. A. Marko, D. Margraf, P. Cekan, S. T. Sigurdsson, O. Schiemann, and T. F. Prisner, Phys. Rev. E, 81, 021911 (2010).

    Article  Google Scholar 

  46. E. S. Salnikov, D. A. Erilov, A. D. Milov, Yu. D. Tsvetkov, C. Peggion, F. Formaggio, C. Toniolo, J. Raap, and S. A. Dzuba, Biophys. J., 91, 1532 (2006).

    Article  CAS  Google Scholar 

  47. G. Jeschke, M. Sajid, N. Ramezanian, A. Volkov, H. Zimmermann, and A. Godt, J. Am. Chem. Soc., 132, 10107–10117 (2010).

    Article  CAS  Google Scholar 

  48. D. Margraf, B. E. Bode, A. Marko, O. Schiemann, and T. F. Prisner, Mol. Phys., 105, 2153–2160 (2007).

    Article  CAS  Google Scholar 

  49. O. Schiemann, N. Piton, Y. Mu, G. Stock, J. W. Engels, and T. F. Prisner, J. Am. Chem. Soc., 126, 5722–5729 (2004).

    Article  CAS  Google Scholar 

  50. A. Godt, M. Schulte, H. Zimmermann, and G. Jeschke, Angew. Chem. Int. Ed., 45, 7560–7564 (2006).

    Article  CAS  Google Scholar 

  51. C. Dockter, A. Volkov, C. Bauer, Y. Polyhach, Z. Joly-Lopez, G. Jeschke, and H. Paulsen, Proc. Natl. Acad. Sci. USA, 106, 18485–18490 (2009).

    Article  CAS  Google Scholar 

  52. D. Margraf, P. Cekan, T. F. Prisner, S. Th. Sigurdsson, and O. Schiemann, Phys. Chem. Chem. Phys., 11, 6708–6714 (2009).

    Article  CAS  Google Scholar 

  53. O. Schiemann, P. Cekan, D. Margraf, T. F. Prisner, and S. Th. Sigurdsson, Angew. Chem. Int. Ed., 48, 3292–3595 (2009).

    Article  CAS  Google Scholar 

  54. G. Jeschke, V. Chechik, P. Ionita, A. Godt, H. Zimmermann, J. Bbanham, C. R. Timmel, D. Hilger, and H. Jung, Appl. Magn. Res., 30, 473–498 (2006).

    Article  CAS  Google Scholar 

  55. G. Jeschke, A. Koch, H. Jones, and A. Godt, J. Magn. Res., 155, 72 (2002).

    Article  CAS  Google Scholar 

  56. A. Godt, M. Schulte, H. Zimmermann, and G. Jeschke, Angew. Chem. Int. Ed., 45, 7560 (2006).

    Article  CAS  Google Scholar 

  57. G. Sicoli, G. Mathis, S. Aci-Seche, C. Saint-Pierre, Y. Boulard, D. Gasparutto, and S. Gambarelli, Nucleic Acids Res., 37, 3165 (2009).

    Article  CAS  Google Scholar 

  58. Y. Polyhach, E. Bordignon, R. Tschaggelar, S. Gandra, A. Godt, and G. Jeschke, Phys. Chem. Chem. Phys., 14, 10762–10773 (2012).

    Article  CAS  Google Scholar 

  59. B. E. Bode, J. Plackmeyer, T. F. Prisner, and O. Schiemann, J. Phys. Chem. A, 112, 5064 (2008).

    Article  CAS  Google Scholar 

  60. B. E. Bode, J. Plackmeyer, M. Bolte, T. F. Prisner, and O. Schiemann, J. Organomet. Chem., 694, 1172 (2009).

    Article  CAS  Google Scholar 

  61. E. Narr, A. Godt, and G. Jeschke, Angew. Chem. Int. Ed., 41, 3907 (2002).

    Article  CAS  Google Scholar 

  62. P. Lueders, G. Jeschke, and M. Yulikov, J. Phys. Chem. Lett., 2, 604–609 (2011).

    Article  CAS  Google Scholar 

  63. A. M. Raitsimring, C. Gunanathan, A. Potapov, I. Efremenko, J. M. L. Martin, D. Milstein, and D. Goldfarb, J. Am. Chem. Soc., 129, 14138/14139 (2007).

    Article  Google Scholar 

  64. A. Potapov, Y. Song, T. J. Meade, D. Goldfarb, A. V. Astashkin, and A. M. Raitsimring, J. Magn. Res., 205, 38–49 (2010).

    Article  CAS  Google Scholar 

  65. A. Potapov, H. Yagi, T. Huber, S. Jergic, N. E. Dixon, G. Otting, and D. Goldfarb, J. Am. Chem. Soc., 132, 9040–9048 (2010).

    Article  CAS  Google Scholar 

  66. A. Savitsky, A. A. Dubinskii, H. Zimmermann, W. Lubitz, and K. Möbius, J. Phys. Chem. B, 115, 11793–11804 (2011).

    Article  Google Scholar 

  67. Ye. Polyhach, A. Godt, C. Bauer, and G. Jeschke, J. Magn. Res., 185, 118 (2007).

    Article  CAS  Google Scholar 

  68. G. W. Reginson, R. I. Hunter, P. A. S. Cruickshank, D. R. Bolton, S. Th. Sigurdsson, G. M. Smith, and O. Schienmann, J. Magn. Res., 216, 175–178 (2012).

    Article  Google Scholar 

  69. G. Jeschke, M. Sajid, M. Schulte, and A. Godt, J. Am. Chem. Soc., 132, 10107–10117 (2010).

    Article  CAS  Google Scholar 

  70. S. Pornsuwan, G. Bird, C. E. Schafmeister, and S. Saxena, J. Am. Chem. Soc., 128, 3876 (2006).

    Article  CAS  Google Scholar 

  71. G. H. Bird, S. Pornsuwan, S. Saxena, and C. E. Schafmeister, ACS NANO, 2, 1857 (2008).

    Article  CAS  Google Scholar 

  72. S. Pornsuwan, C. Schafmeister, and S. Saxena, J. Phys. Chem., 112, 1377–1384 (2008).

    CAS  Google Scholar 

  73. J. E. Lovett, M. Hoffmann, A. Cnossen, A. Shutter, H. Hogben, J. Warren, S. Pascu, C. Kay, C. Timmel, and H. Anderson, J. Am. Chem. Soc., 131, 13852–13859 (2009).

    Article  CAS  Google Scholar 

  74. J. Wilhelm and E. Frey, Phys. Rev. Lett., 77, 2581–2584 (1996).

    Article  CAS  Google Scholar 

  75. P. Pievo, C. Casati, P. Franchi, E. Mezzina, M. Benneti, and M. Lucarini, Chem. Phys. Chem., 13, 2659–2661 (2012).

    Article  CAS  Google Scholar 

  76. G. Jeschke and A. Godt, Chem. Phys. Chem., 4, 1328 (2003).

    Article  CAS  Google Scholar 

  77. J. R. Lacowicz, Principles of Fluorescence Spectroscopy, 2nd Ed. Kluwer Academic/Plenum Publishers (1999).

    Book  Google Scholar 

  78. T. Förster, Ann. Phys., 437, 55 (1948).

    Article  Google Scholar 

  79. D. Grohmann, D. Klose, J. P. Klare, C. W. M. Kay, H.-J. Steinhoff, and F. Werner, J. Am. Chem. Soc., 132, 5954/5955 (2010).

    Article  Google Scholar 

  80. J. L. Sarver, J. E. Townsend, G. Rajapakse, L. Jen-Jacobson, and S. Saxena, J. Phys. Chem. B, 116, 4024–4033 (2012).

    Article  CAS  Google Scholar 

  81. R. Ward, A. Bowman, H. El-Mkami, T. Owen-Hughes, and D. G. Norman, J. Am. Chem. Soc., 131, 1348/1349 (2009).

    Article  Google Scholar 

  82. P. P. Borbat, E. R. Georgieva, and J. H. Freed, Phys. Chem. Lett., 4, 170–175 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. D. Tsvetkov.

Additional information

Original Russian Text Copyright © 2013 by Yu. D. Tsvetkov

__________

Translated from Zhurnal Strukturnoi Khimii, Vol. 54, Supplement 1, pp. S46–S75, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsvetkov, Y.D. Nitroxyls and PELDOR: Nitroxyl radicals in pulsed electron-electron double resonance spectroscopy. J Struct Chem 54 (Suppl 1), 42–72 (2013). https://doi.org/10.1134/S0022476613070044

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476613070044

Keywords

Navigation