Skip to main content
Log in

Role of the Mast Cell–Neuron Tandem in Cardiac Function Regulation in Cardiovascular Pathologies

  • Reviews
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

The review addresses new data on the involvement of mast cells (MCs) in the regulation of cardiac function during the development of some cardiovascular pathologies. Under normal conditions, the number of MCs in the heart is very small compared to their abundance in barrier tissues. They provide cardiac tissue homeostasis and the life-long interaction of the heart with the nervous and endocrine systems. Cardiac pathology is accompanied by the development of the inflammatory response, with MCs playing a significant role at all stages of this process. The number of MCs significantly increases as myocardial infarction, cardiac fibrosis and coronary atherosclerosis develop. Meanwhile, their pathogenic contribution to cardiovascular pathologies is ambiguous because, on the one hand, it is aimed at cardiac tissue adaptation to injury, while on the other hand, the avalanche-like synthesis and release of mediators from activated MCs exacerbates the clinical course of the process. As a result, MCs change their secretory profile, interfere in the realization of cardiac functions against the background of inflammation, but at the same time modulate the afferent information flow from the heart and efferent influences of the nervous system. The coordinated activity of the system loses its stability, leading as a rule to severe consequences for the whole organism. The current status quo analysis of the problem indicates that cardiac activity depends on the functional state of MCs and their complex interaction with the nervous system both under normal conditions and, especially, against the background of developing pathological processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

REFERENCES

  1. Varricchi G, Rossi FW, Galdiero MR, Granata F, Criscuolo G, Spadaro G, de Paulis A, Marone G (2019) Physiological Roles of Mast Cells: Collegium Internationale Allergologicum Update 2019. Int Arch Allergy Immunol 179(4): 247–261.https://doi.org/10.1159/000500088

    Article  CAS  PubMed  Google Scholar 

  2. Elieh Ali Komi D, Wohrl S, Bielory L (2020) Mast Cell Biology at Molecular Level: a Comprehensive Review. Clin Rev Allergy Immunol 58(3): 342–365.https://doi.org/10.1007/s12016-019-08769-2

    Article  PubMed  Google Scholar 

  3. Zhang Z, Ernst PB, Kiyono H, Kurashima Y (2022) Utilizing mast cells in a positive manner to overcome inflammatory and allergic diseases. Front Immunol 13: 937120.https://doi.org/10.3389/fimmu.2022.937120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nilsson G, Dahlin JS (2019) New insights into the origin of mast cells. Allergy 74(4): 844–845.https://doi.org/10.1111/all.13668

    Article  PubMed  Google Scholar 

  5. Dahlin JS, Maurer M, Metcalfe DD, Pejler G, Sagi-Eisenberg R, Nilsson G (2022) The ingenious mast cell: Contemporary insights into mast cell behavior and function. Allergy 77(1): 83–99.https://doi.org/10.1111/all.14881

    Article  PubMed  Google Scholar 

  6. Grigorev IP, Korzhevskii DE (2021) Modern imaging technologies of mast cell for biology and medicine (review). Modern Technol Med 13(4): 93–109.https://doi.org/10.17691/stm2021.13.4.10

    Article  CAS  Google Scholar 

  7. Jin J, Jiang Y, Chakrabarti S, Su Z (2022) Cardiac Mast Cells: A Two-Head Regulator in Cardiac Homeostasis and Pathogenesis Following Injury. Front Immunol 13: 963444.https://doi.org/10.3389/fimmu.2022.963444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. da Silva EZ, Jamur MC, Oliver C (2014) Mast cell function: a new vision of an old cell. J Histochem Cytochem 62(10): 698–738.https://doi.org/10.1369/0022155414545334

    Article  CAS  PubMed  Google Scholar 

  9. Vukman KV, Forsonits A, Oszvald A, Tуth EA, Buzas EI (2017) Mast cell secretome: Soluble and vesicular components. Semin Cell Dev Biol 67: 65–73.https://doi.org/10.1016/j.semcdb.2017.02.002

    Article  CAS  PubMed  Google Scholar 

  10. Levick SP, Brower GL, Janicki J (2019) Substance P-mediated cardiac mast cell activation: An in vitro study. Neuropeptides 74: 52–59.https://doi.org/10.1016/j.npep.2019.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Levick SP, Widiapradja A (2018) Mast Cells: Key Contributors to Cardiac Fibrosis. Int J Mol Sci 19(1): 231.https://doi.org/10.3390/ijms19010231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. He A, Fang W, Zhao K, Wang Y, Li J, Yang C, Benadjaoud F, Shi GP (2019) Mast cell-deficiency protects mice from streptozotocin-induced diabetic cardiomyopathy. Transl Res 208: 1–14.https://doi.org/10.1016/j.trsl.2019.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. He G, Hu J, Li T, Ma X, Meng J, Jia M, Lu J, Ohtsu H, Chen Z, Luo X (2012) Arrhythmogenic effect of sympathetic histamine in mouse hearts subjected to acute ischemia. Mol Med 18(1): 1–9.https://doi.org/10.2119/molmed.2011.00225

    Article  CAS  PubMed  Google Scholar 

  14. Ahmad S, Wright KN, Sun X, Groban L, Ferrario CM (2019) Mast cell peptidases (carboxypeptidase A and chymase)-mediated hydrolysis of human angiotensin-(1-12) substrate. Biochem Biophys Res Commun 518(4): 651–656.https://doi.org/10.1016/j.bbrc.2019.08.098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang X, Shao C, Cheng S, Zhu Y, Liang B, Gu N (2021) Effect of Guanxin V in animal model of acute myocardial infarction. BMC Complement Med Ther 21(1): 72.https://doi.org/10.1186/s12906-021-03211-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kritas SK, Caraffa A, Antinolfi P, Saggini A, Pantalone A, Rosati M, Tei M, Speziali A, Saggini R, Pandolfi F, Cerulli G, Conti P (2014) Nerve growth factor interactions with mast cells. Int J Immunopathol Pharmacol 27(1): 15–19.https://doi.org/10.1177/039463201402700103

    Article  CAS  PubMed  Google Scholar 

  17. Forsythe P (2019) Mast Cells in Neuroimmune Interactions. Trends Neurosci 42(1): 43–55.https://doi.org/10.1016/j.tins.2018.09.006

    Article  CAS  PubMed  Google Scholar 

  18. Carthy E, Ellender T (2021) Histamine, Neuroinflammation and Neurodevelopment: A Review. Front Neurosci 15: 680214.https://doi.org/10.3389/fnins.2021.680214

    Article  PubMed  PubMed Central  Google Scholar 

  19. Li F, Yu R, Sun X, Chen X, Xu P, Huang Y, Huang S, Xue Y, Fu T, Liu J, Li Z (2022) Autonomic nervous system receptor-mediated regulation of mast cell degranulation modulates the inflammation after corneal epithelial abrasion. Exp Eye Res 219: 109065.https://doi.org/10.1016/j.exer.2022.109065

    Article  CAS  PubMed  Google Scholar 

  20. Chumasov EI, Petrova ES, Korzhevskii DE (2021) Morphological signs of neurogenic inflammation in the heart of rats during aging. Uspehi gerontol 34(6): 831–841. (In Russ).

    CAS  Google Scholar 

  21. Kulka M, Sheen CH, Tancowny BP, Grammer LC, Schleimer RP (2008) Neuropeptides activate human mast cell degranulation and chemokine production. Immunology 123(3): 398–410.https://doi.org/10.1111/j.1365-2567.2007.02705.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Siiskonen H, Harvima I (2019) Mast Cells and Sensory Nerves Contribute to Neurogenic Inflammation and Pruritus in Chronic Skin Inflammation. Front Cell Neurosci 13: 422.https://doi.org/10.3389/fncel.2019.00422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Suzuki A, Suzuki R, Furuno T, Teshima R, Nakanishi M (2004) N-cadherin plays a role in the synapse-like structures between mast cells and neurites. Biol Pharm Bull 27(12): 1891–1894.https://doi.org/10.1248/bpb.27.1891

    Article  CAS  PubMed  Google Scholar 

  24. Wilhelm M, Silver R, Silverman AJ (2005) Central nervous system neurons acquire mast cell products via transgranulation. Eur J Neurosci 22(9): 2238–2248.https://doi.org/10.1111/j.1460-9568.2005.04429.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Greenberg G, Burnstock G (1983) A novel cell-to-cell interaction between mast cells and other cell types. Exp Cell Res147(1): 1–13.https://doi.org/10.1016/0014-4827(83)90265-3

    Article  CAS  PubMed  Google Scholar 

  26. Ardell JL, Armour JA (2016) Neurocardiology: Structure-Based Function. Compr Physiol 6(4): 1635–1653.https://doi.org/10.1002/cphy.c150046

    Article  PubMed  Google Scholar 

  27. Li F, Wang F (2021) TRPV1 in Pain and Itch. Adv Exp Med Biol 1349: 249–273.https://doi.org/10.1007/978-981-16-4254-8_12

    Article  CAS  PubMed  Google Scholar 

  28. Morrey C, Brazin J, Seyedi N, Corti F, Silver RB, Levi R (2010). Interaction between sensory C-fibers and cardiac mast cells in ischemia/reperfusion: activation of a local renin-angiotensin system culminating in severe arrhythmic dysfunction. J Pharmacol Exp Ther 335: 76–84.https://doi.org/10.1124/jpet.110.172262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Facoetti A, Fallarini S, Miserere S, Bertolotti A, Ferrero I, Tozzi R, Gatti C, Palladini G, Perlini S, Nano R (2006) Histochemical study of cardiac mast cells degranulation and collagen deposition: interaction with the cathecolaminergic system in the rat. Eur J Histochem 50(2): 133–140.

    CAS  PubMed  Google Scholar 

  30. Reid AC, Brazin JA, Morrey C, Silver RB, Levi R (2011) Targeting cardiac mast cells: pharmacological modulation of the local renin-angiotensin system. Curr Pharm Des 17(34): 3744–3752.https://doi.org/10.2174/138161211798357908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Levick SP (2022) Histamine receptors in heart failure. Heart Fail Rev 27(4): 1355–1372.https://doi.org/10.1007/s10741-021-10166-x

    Article  CAS  PubMed  Google Scholar 

  32. Li M, Luo X, Chen L, Zhang J, Hu J, Lu B (2003) Co-localization of histamine and dopamine-beta-hydroxylase in sympathetic ganglion and release of histamine from cardiac sympathetic terminals of guinea-pig. Auton Autacoid Pharmacol 23(5–6): 327–333.https://doi.org/10.1111/j.1474-8673.2004.00305.x

    Article  PubMed  Google Scholar 

  33. Winbo A, Ashton JL, Montgomery JM (2020) Neuroscience in the heart: Recent advances in neurocardiac communication and its role in cardiac arrhythmias. Int J Biochem Cell Biol 122: 105737.https://doi.org/10.1016/j.biocel.2020.105737

    Article  CAS  PubMed  Google Scholar 

  34. Hanna P, Rajendran PS, Ajijola OA, Vaseghi M, Andrew Armour J, Ardell JL, Shivkumar K (2017) Cardiac neuroanatomy - Imaging nerves to define functional control. Auton Neurosci 207: 48–58.https://doi.org/10.1016/j.autneu.2017.07.008

    Article  PubMed  PubMed Central  Google Scholar 

  35. Shi L, Xu H, Wu Y, Li X, Zou L, Gao J, Chen H (2017) Alpha7-nicotinic acetylcholine receptors involve the imidacloprid-induced inhibition of IgE-mediated rat and human mast cell activation. RSC Adv 7: 51896–51906.https://doi.org/10.1039/C7RA07862E

    Article  CAS  Google Scholar 

  36. Duraes Campos I, Pinto V, Sousa N, Pereira VH (2018) A brain within the heart: A review on the intracardiac nervous system. J Mol Cell Cardiol 119: 1–9.https://doi.org/10.1016/j.yjmcc.2018.04.005

    Article  CAS  PubMed  Google Scholar 

  37. Powers MJ, Peterson BA, Hardwick JC (2001) Regulation of parasympathetic neurons by mast cells and histamine in the guinea pig heart. Auton Neurosci 87(1): 37–45.https://doi.org/10.1016/S1566-0702(00)00260-5

    Article  CAS  PubMed  Google Scholar 

  38. Alfonso A, Le Sueur ANV, Geraldes SS, Guimaraes-Okamoto PTC, Tsunemi MH, Santana DF, Ribeiro VRF, Melchert A, Chiacchio SB, Lourenco MLG (2020) Heart Rate Variability and Electrocardiographic Parameters Predictive of Arrhythmias in Dogs with Stage IV Chronic Kidney Disease Undergoing Intermittent Haemodialysis. Animals (Basel) 10(10): 1829.https://doi.org/10.3390/ani10101829

  39. Pongkan W, Jitnapakarn W, Phetnoi W, Punyapornwithaya V, Boonyapakorn C (2020) Obesity-Induced Heart Rate Variability Impairment and Decreased Systolic Function in Obese Male Dogs. Animals (Basel) 10(8): 1383.https://doi.org/10.3390/ani10081383

  40. Chang YT, Huang WC, Cheng CC, Ke MW, Tsai JS, Hung YM, Huang NC, Huang MS, Wann SR (2020) Effects of epinephrine on heart rate variability and cytokines in a rat sepsis model. Bosn J Basic Med Sci 20(1): 88–98.https://doi.org/10.17305/bjbms.2018.3565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Biering-Sorensen F, Biering-Sorensen T, Liu N, Malmqvist L, Wecht JM, Krassioukov A (2018) Alterations in cardiac autonomic control in spinal cord injury. Auton Neurosci 209: 4–18.https://doi.org/10.1016/j.autneu.2017.02.004

    Article  CAS  PubMed  Google Scholar 

  42. Flood S, Tordoff C (2020) A new heart for organ donation after circulatory death. BJA Educ 20(4): 126–132.https://doi.org/10.1016/j.bjae.2019.12.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Morozova MP, Kurenkova AD, Volkova JuL, Berdalin AB, Banzeluk EN, Umarova BA, Lukoshkova EV, Gavrilova SA (2023) The Initial Autonomic Tone Determines the Progress of Irreversible Myocardial Ischemia in Rats. Biol Bull 50(3): 437–448.https://doi.org/10.1134/S106235902270011X

    Article  Google Scholar 

  44. Simões FC, Riley PR (2022) Immune cells in cardiac repair and regeneration. Development 149(8): dev199906.https://doi.org/10.3389/fimmu.2021.664457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Janicki JS, Brower GL, Levick SP (2015) The emerging prominence of the cardiac mast cell as a potent mediator of adverse myocardial remodeling. Methods Mol Biol 1220: 121–139.https://doi.org/10.1007/978-1-4939-1568-2_8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Elia A, Fossati S (2023) Autonomic nervous system and cardiac neuro-signaling pathway modulation in cardiovascular disorders and Alzheimer's disease. Front Physiol 14: 1060666.https://doi.org/10.3389/fphys.2023.1060666

    Article  PubMed  PubMed Central  Google Scholar 

  47. Alevizos M, Karagkouni A, Panagiotidou S, Vasiadi M, Theoharides TC (2014) Stress triggers coronary mast cells leading to cardiac events. Ann Allergy Asthma Immunol 112(4): 309–316.https://doi.org/10.1016/j.anai.2013.09.017

    Article  CAS  PubMed  Google Scholar 

  48. Xiong W, Zhou R, Qu Y, Yang Y, Wang Z, Song N, Liang R, Qian J (2021) Dexmedetomidine preconditioning mitigates myocardial ischemia/reperfusion injury via inhibition of mast cell degranulation. Biomed Pharmacother 141: 111853.https://doi.org/10.1016/j.biopha.2021.111853

    Article  CAS  PubMed  Google Scholar 

  49. Galagudza MM, Sonin DL, Pochkaeva EI (2018) The no-reflow phenomenon: mechanisms and therapeutic targets. Region Вlood Сirculat and Microcirculat 17(1): 5–12.https://doi.org/10.24884/1682-6655-2018-17-1-5-12

    Article  Google Scholar 

  50. He GH, Xu GL, Cai WK, Zhang J. (2016) Is Histamine H2 Receptor a Real Promising Target for Prevention or Treatment of Heart Failure? J Am Coll Cardiol 68(18): 2029.https://doi.org/10.1016/j.jacc.2016.06.078

    Article  CAS  PubMed  Google Scholar 

  51. Huang YH, Cai WK, Yin SJ, Wang P, Li ZR, Yang Q, Zhou T, Meng R, Yang M, Guo Y, He GH (2022) Histamine H2 receptor antagonist exposure was related to decreased all-cause mortality in critical ill patients with heart failure: a cohort study. Eur J Prev Cardiol 29(14): 1854–1865.https://doi.org/10.1093/eurjpc/zwac122

    Article  PubMed  Google Scholar 

  52. Meng R, Chen LR, Zhang ML, Cai WK, Yin SJ, Fan YX, Zhou T, Huang YH, He GH (2023) Effectiveness and Safety of Histamine H2 Receptor Antagonists: An Umbrella Review of Meta-Analyses. J Clin Pharmacol 63(1): 7–20.https://doi.org/10.1002/jcph.2147

    Article  CAS  PubMed  Google Scholar 

  53. Levick SP, Meléndez GC, Plante E, McLarty JL, Brower GL, Janicki JS (2011) Cardiac mast cells: the centrepiece in adverse myocardial remodelling. Cardiovasc Res 89(1): 12–19.https://doi.org/10.1093/cvr/cvq272

    Article  CAS  PubMed  Google Scholar 

  54. Ngkelo A, Richart A, Kirk JA, Bonnin P, Vilar J, Lemitre M, Marck P, Branchereau M, Le Gall S, Renault N, Guerin C, Ranek MJ, Kervadec A, Danelli L, Gautier G, Blank U, Launay P, Camerer E, Bruneval P, Menasche P, Heymes C, Luche E, Casteilla L, Cousin B, Rodewald HR, Kass DA, Silvestre JS (2016) Mast cells regulate myofilament calcium sensitization and heart function after myocardial infarction. J Exp Med 213(7): 1353–1374.https://doi.org/10.1084/jem.20160081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wei CC, Chen Y, Powell LC, Zheng J, Shi K, Bradley WE, Powell PC, Ahmad S, Ferrario CM, Dell’Italia LJ (2012) Cardiac kallikrein-kinin system is upregulated in chronic volume overload and mediates an inflammatory induced collagen loss. PLoS One 7(6): e40110.https://doi.org/10.1371/journal.pone.0040110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sharma JN (2005) The kallikrein-kinin system: from mediator of inflammation to modulator of cardioprotection. Inflammopharmacology 12(5–6): 591–596.https://doi.org/10.1163/156856005774382760

    Article  CAS  PubMed  Google Scholar 

  57. Li Y, Sun X, Juan Z, Guan X, Wang M, Meng Y, Ma R (2022) Propofol pretreatment alleviates mast cell degranulation by inhibiting SOC to protect the myocardium from ischemia-reperfusion injury. Biomed Pharmacother 150: 113014.https://doi.org/10.1016/j.biopha.2022.113014

    Article  CAS  PubMed  Google Scholar 

  58. Goldberger JJ, Arora R, Buckley U, Shivkumar K (2019) Autonomic Nervous System Dysfunction: JACC Focus Seminar. J Am Coll Cardiol 73(10): 1189–1206.https://doi.org/10.1016/j.jacc.2018.12.064

    Article  PubMed  PubMed Central  Google Scholar 

  59. Stoyek MR, Hortells L, Quinn TA (2021) From Mice to Mainframes: Experimental Models for Investigation of the Intracardiac Nervous System. J Cardiovasc Dev Dis 8(11): 149.https://doi.org/10.3390/jcdd8110149

    Article  PubMed  PubMed Central  Google Scholar 

  60. Frangogiannis NG (2019) Cardiac fibrosis: Cell biological mechanisms, molecular pathways and therapeutic opportunities. Mol Aspects Med 65: 70–99.https://doi.org/10.1016/j.mam.2018.07.001

    Article  CAS  PubMed  Google Scholar 

  61. Kologrivova I, Shtatolkina M, Suslova T, Ryabov V (2021) Cells of the Immune System in Cardiac Remodeling: Main Players in Resolution of Inflammation and Repair After Myocardial Infarction. Front Immunol 12: 664457.https://doi.org/10.3389/fimmu.2021.664457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Palaniyandi Selvaraj S, Watanabe K, Ma M, Tachikawa H, Kodama M, Aizawa Y (2005) Involvement of mast cells in the development of fibrosis in rats with postmyocarditis dilated cardiomyopathy. Biol Pharm Bull 28(11): 2128–2132.https://doi.org/10.1248/bpb.28.2128

    Article  PubMed  Google Scholar 

  63. Bradding P, Pejler G (2018) The controversial role of mast cells in fibrosis. Immunol Rev 282(1): 198–231.https://doi.org/10.1111/imr.12626

    Article  CAS  PubMed  Google Scholar 

  64. Zeng Z, Shen L, Li X, Luo T, Wei X, Zhang J, Cao S, Huang X, Fukushima Y, Bin J, Kitakaze M, Xu D, Liao Y (2014) Disruption of histamine H2 receptor slows heart failure progression through reducing myocardial apoptosis and fibrosis. Clin Sci 127: 435–448.https://doi.org/10.1042/CS20130716

    Article  CAS  Google Scholar 

  65. Hooshdaran B, Kolpakov MA, Guo X, Miller SA, Wang T, Tilley DG, Rafiq K, Sabri A (2017) Dual inhibition of cathepsin G and chymase reduces myocyte death and improves cardiac remodeling after myocardial ischemia reperfusion injury. Basic Res Cardiol 112(6): 62.https://doi.org/10.1007/s00395-017-0652-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hermans M, Lennep JRV, van Daele P, Bot I (2019) Mast Cells in Cardiovascular Disease: From Bench to Bedside. Int J Mol Sci 20(14): 3395.https://doi.org/10.3390/ijms20143395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Moreno M, Puig J, Serrano M, Moreno-Navarrete JM, Ortega F, Ricart W, Fernandez-Real JM (2014) Circulating tryptase as a marker for subclinical atherosclerosis in obese subjects. PLoS One 9(5): e97014.https://doi.org/10.1371/journal.pone.0097014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kouhpeikar H, Delbari Z, Sathyapalan T, Simental-Mendía LE, Jamialahmadi T, Sahebkar A (2020) The Effect of Statins through Mast Cells in the Pathophysiology of Atherosclerosis: a Review. Curr Atheroscler Rep 22(5): 19.https://doi.org/10.1007/s11883-020-00837-9

    Article  CAS  PubMed  Google Scholar 

  69. Palmiere C, Comment L, Vilarino R, Mangin P, Reggiani Bonetti L (2014) Measurement of β-tryptase in postmortem serum in cardiac deaths. J Forensic Leg Med 23: 12–18.https://doi.org/10.1016/j.jflm.2014.01.009

    Article  PubMed  Google Scholar 

  70. Kareinen I, Baumann M, Nguyen SD, Maaninka K, Anisimov A, Tozuka M, Jauhiainen M, Lee-Rueckert M, Kovanen PT (2018) Chymase released from hypoxia-activated cardiac mast cells cleaves human apoA-I at Tyr192 and compromises its cardioprotective activity. J Lipid Res 59(6): 945–957.https://doi.org/10.1194/jlr.M077503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cao J, Papadopoulou N, Kempuraj D, Boucher WS, Sugimoto K, Cetrulo CL, Theoharides TC (2005) Human mast cells express corticotropin-releasing hormone (CRH) receptors and CRH leads to selective secretion of vascular endothelial growth factor. J Immunol 174(12): 7665–7675.https://doi.org/10.4049/jimmunol.174.12.7665

    Article  CAS  PubMed  Google Scholar 

  72. Bot I, de Jager SC, Bot M, van Heiningen SH, de Groot P, Veldhuizen RW, van Berkel TJ, von der Thüsen JH, Biessen EA (2018) The neuropeptide substance P mediates adventitial mast cell activation and induces intraplaque hemorrhage in advanced atherosclerosis. Circ Res 106(1): 89–92.https://doi.org/10.1161/CIRCRESAHA.109.204875

    Article  CAS  Google Scholar 

  73. Xu GZ, Wang G (2022) Acute myocardial infarction due to Kounis syndrome: A case report. World J Clin Cases 10(31): 11555–11560.https://doi.org/10.12998/wjcc.v10.i31.11555

    Article  PubMed  PubMed Central  Google Scholar 

  74. Kounis NG, Cervellin G, Koniari I, Bonfanti L, Dousdampanis P, Charokopos N, Assimakopoulos SF, Kakkos SK, Ntouvas IG, Soufras GD, Tsolakis I (2018) Anaphylactic cardiovascular collapse and Kounis syndrome: systemic vasodilation or coronary vasoconstriction? Ann Transl Med 6(17): 332.https://doi.org/10.21037/atm.2018.09.05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chen J, Hong T, Ding S, Deng L, Abudupataer M, Zhang W, Tong M, Jia J, Gong H, Zou Y, Wang TC, Ge J, Yang X (2017) Aggravated myocardial infarction-induced cardiac remodeling and heart failure in histamine-deficient mice. Sci Rep 7: 44007.https://doi.org/10.1038/srep44007

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by ongoing budget funding to Pirogov Russian National Research University, Institute of Regenerative Medicine (Sechenov First Moscow Medical University), and Lomonosov Moscow State University. No additional grants were received to conduct or supervise this particular study.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization (M.M.), searching for literature sources and their analysis (М.М., A.K., B.U.), writing and editing the manuscript (M.M., A.K., B.U.), final design and final version approval (A.K., B.U.).

Corresponding author

Correspondence to M. P. Morozova.

Ethics declarations

ETHICS APPROVAL

This work did not include animal or human experimental studies.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflict of interest.

Additional information

Translated by A. Polyanovsky

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morozova, M.P., Kurenkova, A.D. & Umarova, B.A. Role of the Mast Cell–Neuron Tandem in Cardiac Function Regulation in Cardiovascular Pathologies. J Evol Biochem Phys 60, 612–632 (2024). https://doi.org/10.1134/S0022093024020145

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093024020145

Keywords:

Navigation