Skip to main content
Log in

Effects of Nitric Oxide on the Electrical Activity of the Rat Trigeminal Nerve and Mast Cell Morphology

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Nitric oxide (NO) is a member of the family of gasotransmitters involved in the regulation of various biological processes. Nitroglycerin, an NO donor, is widely used to simulate migraine in both humans and animals. However, the role of peripheral neuronal structures in the effects of NO is practically unstudied. The aim of the work was to reveal the effects of NO on the electrical activity of the trigeminal nerve and the state of mast cells in the rat brain meninges. We recorded action potentials (APs) in the rat trigeminal nerve innervating the dura mater, in a rat hemiskull preparation. To analyze electrical activity, we used the clustering method, which allows АРs generated by individual fibers to be divided into groups with similar characteristics. Mast cell morphology was assessed by staining the rat dura matter with toluidine blue. L-arginine, the substrate for NO synthesis, increased the electrical activity of the trigeminal nerve in a dose-dependent manner, and this effect was abolished by pre-application of L-NAME (100 µM), an NO synthesis inhibitor. Sodium nitroprusside (SNP 200 µM), an exogenous NO donor, caused an increase in the AP frequency, while light-inactivated SNP had no effect thereupon. Cluster analysis revealed that SNP induced first an increase in the frequency of low-amplitude APs propagating at a low speed in capsaicin-sensitive C-type fibers; later, high-amplitude APs followed, propagating in Aδ-fibers. ODQ (10 µM), a soluble guanylate cyclase inhibitor, prevented SNP-induced increase in electrical activity. At the same time, incubation of the dura matter in SNP had no effect on the morphology of mast cells. Our data suggest that both exogenous and endogenous NO increases the electrical activity of the trigeminal nerve by activating guanylate cyclase, thus contributing to the peripheral neuronal mechanisms of pain in migraine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Hermann A, Sitdikova GF, Weiger TM (eds) (2013) Gasotransmitters: Physiology and pathophysiology. 1–204. https://doi.org/10.1007/978-3-642-30338-8

    Book  Google Scholar 

  2. Sitdikova GF, Yakovlev AV, Gerasimova OV, Yakovleva OV (2014) Gaseous mediators—nitric oxide, carbon monoxide and hydrogen sulfide—as a new class of signaling molecules of intercellular communications. In: Zhdanov RI (ed). Selected Chapters of Fundamental and Translational Medicine. Kazan Univer Press, Kazan. 97–112. (In Russ).

  3. Kuznetsova VL, Solovieva AG (2015) Nitric oxide: properties, biological role, mechanisms of action. Modern Problems Science Education 4: 462–462. (In Russ).

  4. Metelskaya VA, Gumanova NG (2005) Nitric oxide: role in the regulation of biological functions, methods of determination in human blood. Lab Med 7:19–24. (In Russ).

  5. Lvova OA, Orlova AE, Gusev VV, Kovtun OP, Chegodaev DA (2010) To the question of the role of nitric oxide in normal and pathological conditions of the nervous system. System Integrat Healthcare 4:20–35. (In Russ).

  6. Moncada S, Higgs EA (2006) Nitric oxide and the vascular endothelium. Handb Exp Pharmacol 176:213–254. https://doi.org/10.1007/3-540-32967-6_7

    Article  Google Scholar 

  7. Chachlaki K, Garthwaite J, Prevot V (2017) The gentle art of saying NO: How nitric oxide gets things done in the hypothalamus. Nat Rev Endocrinol 13:521–535. https://doi.org/10.1038/nrendo.2017.69

    Article  CAS  PubMed  Google Scholar 

  8. Pradhan AA, Bertels Z, Akerman S (2018) Targeted Nitric Oxide Synthase Inhibitors for Migraine. Neurotherapeutics 15:391–401. https://doi.org/10.1007/s13311-018-0614-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Olesen J (2010) Nitric Oxide-Related Drug Targets in Headache. Neurotherapeutics 7:183–190. https://doi.org/10.1016/j.nurt.2010.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Goadsby PJ (2007) Recent advances in understanding migraine mechanisms, molecules and therapeutics. Trends Mol Med 13:39–44. https://doi.org/10.1016/j.molmed.2006.11.005

    Article  CAS  PubMed  Google Scholar 

  11. Goadsby PJ (2009) Pathophysiology of Migraine. Neurol Clin 27:335–360. https://doi.org/10.1016/j.ncl.2008.11.012

    Article  PubMed  Google Scholar 

  12. Ashina M, Hansen JM, Á Dunga BO, Olesen J (2017) Human models of migraine-short-Term pain for long-Term gain. Nat Rev Neurol 13:713–724. https://doi.org/10.1038/nrneurol.2017.137

    Article  PubMed  Google Scholar 

  13. Bryan NS, Bian K, Murad F (2009) Discovery of the nitric oxide signaling pathway and targets for drug development. Front Biosci 14:1–18. https://doi.org/10.2741/3228

    Article  CAS  Google Scholar 

  14. Bonnet C, Hao J, Osorio N, Donnet A, Penalba V, Ruel J, Delmas P (2019) Maladaptive activation of Nav1.9 channels by nitric oxide causes triptan-induced medication overuse headache. Nat Commun 10:1–13. https://doi.org/10.1038/s41467-019-12197-3

    Article  CAS  Google Scholar 

  15. Bellamy J, Bowen EJ, Russo AF, Durham PL (2006) Nitric oxide regulation of calcitonin gene-related peptide gene expression in rat trigeminal ganglia neurons. Eur J Neurosci 23:2057–2066. https://doi.org/10.1111/j.1460-9568.2006.04742.x

    Article  PubMed  PubMed Central  Google Scholar 

  16. Capuano A, De Corato A, Lisi L, Tringali G, Navarra P, Dello Russo C (2009) Proinflammatory-activated trigeminal satellite cells promote neuronal sensitization: Relevance for migraine pathology. Mol Pain 5:1–13. https://doi.org/10.1186/1744-8069-5-43

    Article  CAS  Google Scholar 

  17. Messlinger K, Lennerz JK, Eberhardt M, Fischer MJM (2012) CGRP and NO in the trigeminal system: Mechanisms and role in headache generation. Headache 52:1411–1427. https://doi.org/10.1111/j.1526-4610.2012.02212.x

    Article  PubMed  Google Scholar 

  18. Coleman JW (2002) Nitric oxide: A regulator of mast cell activation and mast cell-mediated inflammation. Clin Exp Immunol 129:4–10. https://doi.org/10.1046/j.1365-2249.2002.01918.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Forsythe P, Gilchrist M, Kulka M, Befus AD (2001) Mast cells and nitric oxide: Control of production, mechanisms of response. Int Immunopharmacol 1:1525–1541. https://doi.org/10.1016/S1567-5769(01)00096-0

    Article  CAS  PubMed  Google Scholar 

  20. Pedersen SH, Ramachandran R, Amrutkar DV, Petersen S, Olesen J, Jansen-Olesen I (2015) Mechanisms of glyceryl trinitrate provoked mast cell degranulation. Cephalalgia 35:1287–1297. https://doi.org/10.1177/0333102415574846

    Article  PubMed  Google Scholar 

  21. Eberhardt M, Dux M, Namer B, Miljkovic J, Cordasic N, Will C, Kichko TI, De La Roche J, Fischer M, Suárez SA, Bikiel D, Dorsch K, Leffler A, Babes A, Lampert A, Lennerz JK, Jacobi J, Martí MA, Doctorovich F, Högestätt ED, Zygmunt PM, Ivanovic-Burmazovic I, Messlinger K, Reeh P, Filipovic MR (2014) H2S and NO cooperatively regulate vascular tone by activating a neuroendocrine HNO-TRPA1-CGRP signalling pathway. Nat Commun 5:1–17. https://doi.org/10.1038/ncomms5381

    Article  CAS  Google Scholar 

  22. Dux M, Will C, Vogler B, Filipovic MR, Messlinger K (2016) Meningeal blood flow is controlled by H2S-NO crosstalk activating a HNO-TRPA1-CGRP signalling pathway. Br J Pharmacol 173:431–445. https://doi.org/10.1111/bph.13164

    Article  CAS  PubMed  Google Scholar 

  23. Zhang X, Levy D, Kainz V, Noseda R, Jakubowski M, Burstein R (2011) Activation of central trigeminovascular neurons by cortical spreading depression. Ann Neurol 69:855–865. https://doi.org/10.1002/ana.22329

    Article  PubMed  PubMed Central  Google Scholar 

  24. Yam MF, Loh YC, Tan CS, Adam SK, Manan NA, Basir R (2018) General pathways of pain sensation and the major neurotransmitters involved in pain regulation. Int J Mol Sci 19 (8): 2164. https://doi.org/10.3390/ijms19082164

    Article  CAS  PubMed Central  Google Scholar 

  25. Levy D, Strassman AM (2004) Modulation of dural nociceptor mechanosensitivity by the nitric oxide-cyclic GMP signaling cascade. J Neurophysiol 92:766–772. https://doi.org/10.1152/jn.00058.2004

    Article  CAS  PubMed  Google Scholar 

  26. Edvinsson L, Haanes KA, Warfvinge K (2019) Does inflammation have a role in migraine? Nat Rev Neurol 15:483–490. https://doi.org/10.1038/s41582-019-0216-y

    Article  PubMed  Google Scholar 

  27. Undem BJ, Riccio MM, Weinreich D, Ellis JL, Myers AC (1995) Neurophysiology of mast cell-nerve interactions in the airways. Int Arch Allergy Immunol 107:199–201. https://doi.org/10.1159/000236976

    Article  CAS  PubMed  Google Scholar 

  28. Spanos C, Pang X, Ligris K, Letourneau R, Alferes L, Alexacos N, Sant GR, Theoharides TC (1997) Stress-induced bladder mast cell activation: Implications for interstitial cystitis. J Urol 157:669–672. https://doi.org/10.1016/S0022-5347(01)65247-9

    Article  CAS  PubMed  Google Scholar 

  29. Theoharides TC, Donelan J, Kandere-Grzybowska K, Konstantinidou A (2005) The role of mast cells in migraine pathophysiology. Brain Res Rev 49:65–76. https://doi.org/10.1016/j.brainresrev.2004.11.006

    Article  CAS  PubMed  Google Scholar 

  30. Levy D, Burstein R, Kainz V, Jakubowski M, Strassman AM (2007) Mast cell degranulation activates a pain pathway underlying migraine headache. Pain 130:166–176. https://doi.org/10.1016/j.pain.2007.03.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Levy D (2009) Migraine pain, meningeal inflammation, and mast cells. Curr Pain Headache Rep 13:237–240. https://doi.org/10.1007/s11916-009-0040-y

    Article  PubMed  Google Scholar 

  32. Gilchrist M, McCauley SD, Befus AD (2004) Expression, localization, and regulation of NOS in human mast cell lines: Effects on leukotriene production. Blood 104:462–469. https://doi.org/10.1182/blood-2003-08-2990

    Article  CAS  PubMed  Google Scholar 

  33. McCauley SD, Gilchrist M, Befus AD (2005) Nitric oxide: A major determinant of mast cell phenotype and function. Mem Inst Oswaldo Cruz 100:11–14. https://doi.org/10.1590/S0074-02762005000900003

    Article  CAS  PubMed  Google Scholar 

  34. Forsythe P, Gilchrist M, Kulka M, Befus AD (2001) Mast cells and nitric oxide: Control of production, mechanisms of response. Int Immunopharmacol 1:1525–1541. https://doi.org/10.1016/S1567-5769(01)00096-0

    Article  CAS  PubMed  Google Scholar 

  35. De Col R, Messlinger K, Carr RW (2012) Repetitive activity slows axonal conduction velocity and concomitantly increases mechanical activation threshold in single axons of the rat cranial dura. J Physiol 590:725–736. https://doi.org/10.1113/jphysiol.2011.220624

    Article  CAS  PubMed  Google Scholar 

  36. Zakharov A, Vitale C, Kilinc E, Koroleva K, Fayuk D, Shelukhina I, Naumenko N, Skorinkin A, Khazipov R, Giniatullin R (2015) Hunting for origins of migraine pain: Cluster analysis of spontaneous and capsaicin-induced firing in meningeal trigeminal nerve fibers. Front Cell Neurosci 9:287. https://doi.org/10.3389/fncel.2015.00287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shatillo A, Koroleva K, Giniatullina R, Naumenko N, Slastnikova AA, Aliev RR, Bart G, Atalay M, Gu C, Khazipov R, Davletov B, Grohn O, Giniatullin R (2013) Cortical spreading depression induces oxidative stress in the trigeminal nociceptive system. Neuroscience 253:341–349. https://doi.org/10.1016/j.neuroscience.2013.09.002

    Article  CAS  PubMed  Google Scholar 

  38. Shimada A, Cairns BE, Vad N, Ulriksen K, Pedersen AML, Svensson P, Baad-Hansen L (2013) Headache and mechanical sensitization of human pericranial muscles after repeated intake of monosodium glutamate (MSG). J Headache Pain 14:1–9. https://doi.org/10.1186/1129-2377-14-2

    Article  CAS  Google Scholar 

  39. Gusel’nikova VV, Sukhorukova EG, Fedorova EA, Polevshchikov AV, Korzhevskii DE (2015) A Method for the Simultaneous Detection of Mast Cells and Nerve Terminals in the Thymus in Laboratory Mammals. Neurosci Behav Physiol 45:371–374. https://doi.org/10.1007/s11055-015-0084-x

    Article  CAS  Google Scholar 

  40. Levy D (2010) Migraine pain and nociceptor activation—Where do we stand? Headache 50:909–916. https://doi.org/10.1111/j.1526-4610.2010.01670.x

    Article  PubMed  Google Scholar 

  41. Julius D, Basbaum AI (2001) Molecular mechanisms of nociception. Nature 413:203–210. https://doi.org/10.1038/35093019

    Article  CAS  PubMed  Google Scholar 

  42. Moran MM, McAlexander MA, Bíró T, Szallasi A (2011) Transient receptor potential channels as therapeutic targets. Nat Rev Drug Discov 10:601–620. https://doi.org/10.1038/nrd3456

    Article  CAS  PubMed  Google Scholar 

  43. Theoharides TC, Spanos C, Pang X, Alferes L, Ligris K, Letourneau R, Rozniecki JJ, Webster E, Chrousos GP (1995) Stress-induced intracranial mast cell degranulation: A corticotropin-releasing hormone-mediated effect. Endocrinology 136:5745–5750. https://doi.org/10.1210/endo.136.12.7588332

    Article  CAS  PubMed  Google Scholar 

  44. Schemann M, Kugler EM, Buhner S, Eastwood C, Donovan J, Jiang W, Grundy D (2012) The Mast Cell Degranulator Compound 48/80 Directly Activates Neurons. PLoS One 7:e52104. https://doi.org/10.1371/journal.pone.0052104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bartsch T, Goadsby PJ (2002) Stimulation of the greater occipital nerve induces increased central excitability of dural afferent input. Brain 125:1496–1509. https://doi.org/10.1093/brain/awf166

    Article  PubMed  Google Scholar 

  46. Bove GM, Moskowitz MA (1997) Primary afferent neurons innervating guinea pig dura. J Neurophysiol 77:299–308. https://doi.org/10.1152/jn.1997.77.1.299

    Article  CAS  PubMed  Google Scholar 

  47. Burstein R, Yamamura H, Malick A, Strassman AM (1998) Chemical stimulation of the intracranial dura induces enhanced responses to facial stimulation in brain stem trigeminal neurons. J Neurophysiol 79:964–982. https://doi.org/10.1152/jn.1998.79.2.964

    Article  CAS  PubMed  Google Scholar 

  48. Moskowitz MA (1984) The neurobiology of vascular head pain. Ann Neurol 16:157–168. https://doi.org/10.1002/ana.410160202

    Article  CAS  PubMed  Google Scholar 

  49. Moskowitz MA, Macfarlane R (1993) Neurovascular and molecular mechanisms in migraine headaches. Cerebrovasc Brain Metab Rev 5:159–177.

  50. Bolay H, Reuter U, Dunn AK, Huang Z, Boas DA, Moskowitz MA (2002) Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model. Nat Med 8:136–142. https://doi.org/10.1038/nm0202-136

    Article  CAS  PubMed  Google Scholar 

  51. Karatas H, Erdener SE, Gursoy-Ozdemir Y, Lule S, Eren-Koçak E, Sen ZD, Dalkara T (2013) Spreading depression triggers headache by activating neuronal Panx1 channels. Science 80 (339):621. https://doi.org/10.1126/science.1231897

    Article  CAS  Google Scholar 

  52. Thomsen LL (1997) Investigations into the role of nitric oxide and the large intracranial arteries in migraine headache. Cephalalgia 17:873–895. https://doi.org/10.1046/j.1468-2982.1997.1708873.x

    Article  CAS  PubMed  Google Scholar 

  53. Edvinsson L, Villalón CM, Maassenvandenbrink A (2012) Basic mechanisms of migraine and its acute treatment. Pharmacol Ther 136:319–333. https://doi.org/10.1016/j.pharmthera.2012.08.011

    Article  CAS  PubMed  Google Scholar 

  54. Edvinsson L, Mulder H, Goadsby PJ, Uddman R (1998) Calcitonin gene-related peptide and nitric oxide in the trigeminal ganglion: Cerebral vasodilatation from trigeminal nerve stimulation involves mainly calcitonin gene-related peptide. J Auton Nerv Syst 70:15–22. https://doi.org/10.1016/S0165-1838(98)00033-2

    Article  CAS  PubMed  Google Scholar 

  55. Toda N (1993) Mediation by nitric oxide of neurally-induced human cerebral artery relaxation. Experientia 49:51–53. https://doi.org/10.1007/BF01928789

    Article  CAS  PubMed  Google Scholar 

  56. Ayajiki K, Fujioka H, Okamura T, Toda N (2001) Relatively selective neuronal nitric oxide synthase inhibition by 7-nitroindazole in monkey isolated cerebral arteries. Eur J Pharmacol 423:179–183. https://doi.org/10.1016/S0014-2999(01)01068-8

    Article  CAS  PubMed  Google Scholar 

  57. Guerrero-Toro C, Koroleva K, Ermakova E, Gafurov O, Abushik P, Tavi P, Sitdikova G, Giniatullin R (2022) Testing the Role of Glutamate NMDA Receptors in Peripheral Trigeminal Nociception Implicated in Migraine Pain. Int J Mol Sci 23:1529. https://doi.org/10.3390/ijms23031529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Colonna DM, Meng W, Deal DD, Busija DW (1994) Nitric oxide promotes arteriolar dilation during cortical spreading depression in rabbits. Stroke 25(12):2463–2470. https://europepmc.org/article/med/7526490. Accessed 17 Apr 2022

  59. Colonna DM, Meng W, Deal DD, Gowda M, Busija DW (1997) Neuronal NO promotes cerebral cortical hyperemia during cortical spreading depression in rabbits. Am J Physiol Hear Circ Physiol 272 (3):H1315–H1322. https://doi.org/10.1152/ajpheart.1997.272.3.h1315

    Article  CAS  Google Scholar 

  60. Meng W, Colonna DM, Tobin JR, Busija DW (1995) Nitric oxide and prostaglandins interact to mediate arteriolar dilation during cortical spreading depression. Am J Physiol Hear Circ Physiol 269(1):H176–H181. https://doi.org/10.1152/ajpheart.1995.269.1.h176

    Article  CAS  Google Scholar 

  61. Akerman S, Williamson DJ, Kaube H, Goadsby PJ (2002) Nitric oxide synthase inhibitors can antagonize neurogenic and calcitonin gene-related peptide induced dilation of dural meningeal vessels. Br J Pharmacol 137:62–68. https://doi.org/10.1038/sj.bjp.0704842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lassen LH, Ashina M, Christiansen I, Ulrich V, Olesen J (1997) Nitric oxide synthase inhibition in migraine. Lancet 349:401–402. https://doi.org/10.1016/S0140-6736(97)80021-9

    Article  CAS  PubMed  Google Scholar 

  63. Ashina M, Lassen LH, Bendtsen L, Jensen R, Olesen J (1999) Effect of inhibition of nitric oxide synthase on chronic tension-type headache: A randomised crossover trial. Lancet 353:287–289. https://doi.org/10.1016/S0140-6736(98)01079-4

    Article  CAS  PubMed  Google Scholar 

  64. De Col R, Koulchitsky SV, Messlinger KB (2003) Nitric oxide synthase inhibition lowers activity of neurons with meningeal input in the rat spinal trigeminal nucleus. Neuroreport 14:229–232. https://doi.org/10.1097/00001756-200302100-00014

    Article  PubMed  Google Scholar 

  65. Olesen J (2010) Nitric Oxide-Related Drug Targets in Headache. Neurotherapeutics 7:183–190. https://doi.org/10.1016/j.nurt.2010.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hoskin KL, Bulmer DCE, Goadsby PJ (1999) Fos expression in the trigeminocervical complex of the cat after stimulation of the superior sagittal sinus is reduced by L-NAME. Neurosci Lett 266:173–176. https://doi.org/10.1016/S0304-3940(99)00281-5

    Article  CAS  PubMed  Google Scholar 

  67. Grossi L, D’Angelo S (2005) Sodium nitroprusside: Mechanism of NO release mediated by sulfhydryl-containing molecules. J Med Chem 48:2622–2626. https://doi.org/10.1021/jm049857n

    Article  CAS  PubMed  Google Scholar 

  68. MacIver MB, Tanelian DL (1993) Structural and functional specialization of Aδ and C fiber free nerve endings innervating rabbit corneal epithelium. J Neurosci 13:4511–4524. https://doi.org/10.1523/jneurosci.13-10-04511.1993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Neeb L, Reuter U (2008) Nitric Oxide in Migraine. CNS Neurol Disord—Drug Targets 6:258–264. https://doi.org/10.2174/187152707781387233

    Article  Google Scholar 

  70. Klyachko VA, Ahern GP, Jackson MB (2001) cGMP-mediated facilitation in nerve terminals by enhancement of the spike afterhyperpolarization. Neuron 31:1015–1025. https://doi.org/10.1016/S0896-6273(01)00449-4

    Article  CAS  PubMed  Google Scholar 

  71. Al-Karagholi MAM, Ghanizada H, Waldorff Nielsen CA, Skandarioon C, Snellman J, Lopez-Lopez C, Hansen JM, Ashina M (2021) Opening of BKCa channels causes migraine attacks: a new downstream target for the treatment of migraine. Pain 162:2512–2520. https://doi.org/10.1097/j.pain.0000000000002238

    Article  CAS  PubMed  Google Scholar 

  72. Ben Aissa M, Tipton AF, Bertels Z, Gandhi R, Moye LS, Novack M, Bennett BM, Wang Y, Litosh V, Lee SH, Gaisina IN, Thatcher GRJ, Pradhan AA (2018) Soluble guanylyl cyclase is a critical regulator of migraine-associated pain. Cephalalgia 38:1471–1484. https://doi.org/10.1177/0333102417737778

    Article  PubMed  Google Scholar 

  73. Bertels Z, Pradhan AAA (2019) Emerging Treatment Targets for Migraine and Other Headaches. Headache 59:50–65. https://doi.org/10.1111/head.13585

    Article  PubMed  PubMed Central  Google Scholar 

  74. Ferreira J, Santos ARS, Calixto JB (1999) The role of systemic, spinal and supraspinal L-arginine-nitric oxide-cGMP pathway in thermal hyperalgesia caused by intrathecal injection of glutamate in mice. Neuropharmacology 38:835–842. https://doi.org/10.1016/S0028-3908(99)00006-4

    Article  CAS  PubMed  Google Scholar 

  75. Kawamata T, Omote K (1999) Activation of spinal N-methyl-D-aspartate receptors stimulates a nitric oxide/cyclic guanosine 3',5'-monophosphate/glutamate release cascade in nociceptive signaling. Anesthesiology 91:1415–1424. https://doi.org/10.1097/00000542-199911000-00035

    Article  CAS  PubMed  Google Scholar 

  76. Tao YX, Johns RA (2002) Activation and up-regulation of spinal cord nitric oxide receptor, soluble guanylate cyclase, after formalin injection into the rat hind paw. Neuroscience 112:439–446. https://doi.org/10.1016/S0306-4522(02)00075-1

    Article  CAS  PubMed  Google Scholar 

  77. Song XJ, Wang ZB, Gan Q, Walters ET (2006) cAMP and cGMP contribute to sensory neuron hyperexcitability and hyperalgesia in rats with dorsal root ganglia compression. J Neurophysiol 95:479–492. https://doi.org/10.1152/jn.00503.2005

    Article  CAS  PubMed  Google Scholar 

  78. Artico M, Cavallotti C (2001) Catecholaminergic and acetylcholine esterase containing nerves of cranial and spinal dura mater in humans and rodents. Microsc Res Tech 53:212–220. https://doi.org/10.1002/jemt.1085

    Article  CAS  PubMed  Google Scholar 

  79. Varatharaj A, MacK J, Davidson JR, Gutnikov A, Squier W (2012) Mast cells in the human dura: Effects of age and dural bleeding. Child’s Nerv Syst 28:541–545. https://doi.org/10.1007/s00381-012-1699-7

    Article  CAS  Google Scholar 

  80. Dimlich RVW, Keller JT, Strauss TA, Fritts MJ (1991) Linear arrays of homogenous mast cells in the dura mater of the rat. J Neurocytol 20:485–503. https://doi.org/10.1007/BF01252276

    Article  CAS  PubMed  Google Scholar 

  81. Rozniecki JJ, Dimitriadou V, Lambracht-Hall M, Pang X, Theoharides TC (1999) Morphological and functional demonstration of rat dura mater mast cell-neuron interactions in vitro and in vivo. Brain Res 849:1–15. https://doi.org/10.1016/S0006-8993(99)01855-7

    Article  CAS  PubMed  Google Scholar 

  82. Strassman AM, Weissner W, Williams M, Ali S, Levy D (2004) Axon Diameters and Intradural Trajectories of the Dural Innervation in the Rat. J Comp Neurol 473:364–376. https://doi.org/10.1002/cne.20106

    Article  PubMed  Google Scholar 

  83. Dimitriadou V, Rouleau A, Trung Tuong MD, Newlands GJF, Miller HRP, Luffau G, Schwartz JC, Garbarg M (1997) Functional relationships between sensory nerve fibers and mast cells of dura mater in normal and inflammatory conditions. Neuroscience 77:829–839. https://doi.org/10.1016/S0306-4522(96)00488-5

    Article  CAS  PubMed  Google Scholar 

  84. Kilinc E, Tore F, Dagistan Y, Bugdayci G (2020) Thymoquinone Inhibits Neurogenic Inflammation Underlying Migraine Through Modulation of Calcitonin Gene-Related Peptide Release and Stabilization of Meningeal Mast Cells in Glyceryltrinitrate-Induced Migraine Model in Rats. Inflammation 43:264–273. https://doi.org/10.1007/s10753-019-01115-w

    Article  CAS  PubMed  Google Scholar 

  85. Ferrari LF, Levine JD, Green PG (2016) Mechanisms mediating nitroglycerin-induced delayed-onset hyperalgesia in the rat. Neuroscience 317:121–129. https://doi.org/10.1016/j.neuroscience.2016.01.005

    Article  CAS  PubMed  Google Scholar 

  86. Olesen J, Iversen HK, Thomsen L (1993) Nitric oxide supersensitivity: a possible molecular mechanism of migraine pain. Neuro Report 4(8):1027–1030. https://doi.org/10.1097/00001756-199308000-00008

    Article  CAS  Google Scholar 

  87. Headache Classification Committee of the International Headache Society. The International Classification of Headache Disorders, 3rd edition (beta version). Cephalalgia. 2013 Jul; 33(9):629–808. https://doi.org/10.1177/0333102417738202

  88. Jacobs B, Dussor G (2016) Neurovascular contributions to migraine: Moving beyond vasodilation. Neuroscience 338:130–144. https://doi.org/10.1016/j.neuroscience.2016.06.012

    Article  CAS  PubMed  Google Scholar 

  89. Li J, Vause C V, Durham PL (2008) Calcitonin gene-related peptide stimulation of nitric oxide synthesis and release from trigeminal ganglion glial cells. Brain Res 1196:22–32. https://doi.org/10.1016/j.brainres.2007.12.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Messlinger K, Russo AF (2019) Current understanding of trigeminal ganglion structure and function in headache. Cephalalgia 39:1661–1674. https://doi.org/10.1177/0333102418786261

    Article  PubMed  Google Scholar 

  91. Iyengar S, Johnson KW, Ossipov MH, Aurora SK (2019) CGRP and the Trigeminal System in Migraine. Headache 59:659–681. https://doi.org/10.1111/head.13529

    Article  PubMed  PubMed Central  Google Scholar 

  92. Ashina M (2012) Vascular changes have a primary role in migraine. Cephalalgia 32 (5):428–430. https://doi.org/10.1177/0333102412438978

    Article  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The study was implemented within the Strategic Academic Leadership Program of the Kazan Federal University.

Funding

This work was supported by the Russian Science Foundation (RSF grant 21-75-00042) and the grant of the President of the Russian Federation (MK-4584.2022.1.4).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and experimental design (G.F.S., K.S.K.); data collection (S.O.S., D.A.N.); data processing (A.D.B., O.Sh.G.); manuscript writing and editing (G.F.S., K.S.K.).

Corresponding author

Correspondence to K. S. Koroleva.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have neither evident nor potential conflict of interest related to the publication of this article.

Additional information

Translated by A. Polyanovsky

Russian Text © The Author(s), 2022, published in Rossiiskii Fiziologicheskii Zhurnal imeni I.M. Sechenova, 2022, Vol. 108, No. 6, pp. 745–761https://doi.org/10.31857/S0869813922060048.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koroleva, K.S., Svitko, S.O., Nurmieva, D.A. et al. Effects of Nitric Oxide on the Electrical Activity of the Rat Trigeminal Nerve and Mast Cell Morphology. J Evol Biochem Phys 58, 901–914 (2022). https://doi.org/10.1134/S0022093022030243

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093022030243

Keywords:

Navigation