Skip to main content
Log in

Distribution of Calcium-Binding Proteins and Cytochrome Oxidase Activity in the Projective Zone (Wulst) of the Pigeon Thalamofugal Visual Pathway: A Discussion in the Light of Current Concepts on Homology between the Avian Wulst and the Mammalian Striate (Visual) Cortex

  • Problem Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

This polemic article focuses on the current concepts of the architectonics of the hyperpallial projective zone (Wulst) in the avian thalamofugal visual pathway and the distribution of calcium-binding proteins parvalbumin (PV) and calbindin (CB), as well as cytochrome oxidase (CO) activity, in these brain regions of birds, including our histochemical and immunohistochemical data obtained on the pigeon. In the principal thalamorecipient sensory area of the Wulst, n. interstitialis hyperpallium apicale/hyperpallium intercalatum (IHA/HI), three discrete zones are identified: the two, containing punctate PV-ir neuropil and a densely packed population of mainly small PV-ir stellate and granular cells, and a single zone formed by punctate CB-ir neuropil and mainly CB-ir cells. The IHA/HI area is distinguished by a high CO activity. In the hyperpallium apicale (HA) and hyperpallium densocellulare (HD), PV-ir and CB-ir neurons of varied morphotypes are scattered diffusely throughout neuropil which is moderately immunoreactive to both calcium-binding proteins. These areas are characterized by the presence of large pyramidal-like and multipolar PV-ir and CB-ir neurons with long branched dendrites forming a cellular/fibrous layer in the superficial HA area. It is concluded that the thalamofugal visual pathway in the pigeon has two, PV- and CB-specific, channels. We draw a comparative analysis of the variability of these channels in different avian species, which is supposed to be due to variable ecological and adaptive factors. Within the current idea about the organization and evolutionary origin of the avian Wulst and the mammalian striate (visual) cortex, the homology between these brain structures is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CaBPr:

calcium-binding proteins

CBc:

calbindin

CO:

cytochrome oxidase

DLA:

n. dorsolateralis anterior

DLAlr:

n. dorsolateralis anterior pars rostrolateralis

DLAmc:

n. dorsolateralis anterior pars magnocellularis

DLL:

n. dorsolateralis anterior pars lateralis

DVR:

dorsal ventricular ridge

GLd:

n. geniculatus lateralis pars dorsalis

HA:

hyperpallium apicale

HD:

hyperpallium densocellulare

HI:

hyperpallium intercalatum

IHA:

n. interstitialis hyperpallium apicale

-ir:

immunoreactive

HL:

hyperpallium laterale

LA:

n. lateralis anterior thalami

LAN:

nucleus pallialis laminaris

LdOPT:

n. lateralis dorsalis nuclei optici principalis thalami

PV:

parvalbumin

Rot:

n. rotundus

SPC:

n. superficialis parvocellularis

SpRot:

n. suprarotundus

V:

ventricle

Va:

vallecula

References

  1. Karten, H.J., The organization of the avian telencephalon and some speculation on the phylogeny of the amniote telencephalon, Ann. N.Y. Acad. Sci., 1969, vol. 167, pp. 164–179.

    Article  Google Scholar 

  2. Karten, H.J., Homology and evolutionary origin of the “neocortex”, Brain Behav. Evol., 1991, vol. 38, pp. 264–272.

    Article  CAS  PubMed  Google Scholar 

  3. Karten, H.J., Hodos, W., Nauta, W.J., and Revzin, A.M., Neural connections of the “visual Wulst” of the avian telencephalon. Experimental studies in the pigeon (Columba livia) and owl (Speotyto cunicularis), J. Comp. Neurol., 1973, vol. 150, pp. 253–278.

    Article  CAS  PubMed  Google Scholar 

  4. Shimizu, T. and Karten, H.J., Central visual pathways in reptiles and birds: evolution of the visual system, Vision and Visual Disfunction, vol. 2, Cronly-Dillon, J. and Gregory, R., Eds., 1991, pp. 421–441.

  5. Butler, A.B. and Hodos, W., Comparative Vertebrate Neuroanatomy. Evolution and Adaptation, 2nd edition, Hoboken, New Jersey, 2005.

  6. Reiner, A., Perkel, D.J., Bruce, L.L., Butler, A.B, Csillag, A., et al., Avian brain nomenclature forum. Revised nomenclature for avian telencephalon and some other related brainstem nuclei, J. Comp. Neurol., 2004, vol. 473, pp. 377–414.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jarvis, E.D., Güntürkün, O., Bruce, L., Csillag, A., Karten, H.J., Kuenzel, W., Medina, L., et al., Avian brains and a new understanding of vertebrate brain evolution, Nat. Rev. Neurosci., 2005, vol. 6, pp. 151–159.

    Article  CAS  PubMed  Google Scholar 

  8. Braun, K., Scheich, H., Schachner, M., and Heizmann, C.W., Distribution of parvalbumin, cytochrome oxidase activity and [14C] 2-deoxyglucose uptake in the brain zebra finch II Visual system, Cell Tissue Res., 1985, vol. 240, pp. 117–127.

    Article  CAS  Google Scholar 

  9. Heizmann, C.W. and Braun, K., Calcium-binding proteins: molecular and functional aspects, The Role of Calcium in Biological Systems, Roca Raton, + 1990, pp. 21–55.

  10. Heyers, D., Manns, M., Luksch, H., Güntürkün, O., and Mouritsen, H., Calcium-binding proteins label functional streams of the visual system in a songbird, Brain Res. Bull., 2008, vol. 75, pp. 324–355.

    Article  CAS  Google Scholar 

  11. Belekhova, M.G., Kenigfest, N.B., and Chudinova, T.V., Activity of cytochrome oxidase in centers of tectofugal and thalamofugal tracts of the visual system of pigeon Columbia livia, J. Evol. Biochem. Physiol., 2011, vol. 47 (1), pp. 83–96.

    Article  CAS  Google Scholar 

  12. Belekhova, M.G., Chudinova, T.V., Rio, J.-P., Tostivint, H., Vesselkin, N.P., and Kenigfest, N.B., Distribution of calcium-binding proteins in the visual thalamic nuclei and related pretectal and mesencephalic nuclei in pigeons. Phylogenetic and functional determinating factors, Brain Res., 2016, vol. 1631, pp. 165–193.

    Article  CAS  PubMed  Google Scholar 

  13. Belekhova, M.G., Vasilyev, D.S., Kenigfest, N.B., and Chudinova, T.V., Calcium-binding proteins and cytochrome oxidase activity in the pigeon entopallium: a comparative analysis of interspecies variability as related to the discussion on avian entopallium homology, J. Evol. Biochem. Physiol., 2018, vol. 54, pp. 60–72.

    Article  Google Scholar 

  14. Manns, M., Freund, N., and Gűntűrkűn, O., Development of the diencephalic relay structures of the visual thalamofugal system in pigeons, Brain Res. Bull., 2008, vol. 66, pp. 424–427.

    Article  CAS  Google Scholar 

  15. Metzger, M., Fernandez, M.O., Miziara Ribeiro, L.A., and Baro, J., Neuroanatomy of visual and auditory areas of the forebrain and thalamus of the barn owl, 6th European Conference of Comparative Neurobiology, Valencia, 2010, p. 63.

  16. Pfeiffer, C.P. and Britto, L.R., Distribution of calcium-binding proteins in the chick visual system, Braz. J. Med. Biol. Res., 1997, vol. 30, pp. 1315–1318.

    Article  CAS  PubMed  Google Scholar 

  17. Wong-Riley, M.T., Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry, Brain Res., 1979, vol. 171, pp. 11–28.

    Article  CAS  PubMed  Google Scholar 

  18. Gűntűrkűn, O. and Karten, H.J., An immunocytochemical analysis of the lateral geniculate complex in the pigeon (Columba livia), J. Comp. Neurol., 1991, vol. 314, pp. 721–749.

    Article  PubMed  Google Scholar 

  19. Karten, H.J. and Hodos, W., A Stereotaxic Atlas of the Brain of the Pigeon (Columba livia), Baltimore, 1967.

  20. Obuhov, D.K., Current concepts of structural and functional organization of the avian telencephalon, Trudy Sankt-Peterburgskogo obshchestva estestvoispytatelei, Morfogenez i reaktivnaya perestroika nervnoi sistemy (Proceedings of St. Petersburg Naturalists Society, Morphogenesis and Reactive Rearrangement of the Nervous System), 1996, vol. 76, pp. 113–133.

    Google Scholar 

  21. Dubbeldam, J.L., Birds, The Central Nervous System of Vertebrates, vol. 3, Nieuwenhuys, R., Ten Donkelaar, H.D., and Nicholson, C., Eds., Berlin, Heidelberg, 1998, pp. 1525–1636.

  22. Suarez, J., Davila, J.C., Real, M.A., Guirado, S., and Medina, L., Calcium-binding proteins, neuronal nitric oxide, and GABA help to distinguish different pallial areas in the developing and adult chicken. I. Hippocampal formation and hyperpallium, J. Comp. Neurol., 2006, vol. 497, pp. 751–771.

    Article  CAS  PubMed  Google Scholar 

  23. Medina, L., Do birds and reptiles possess homologues of mammalian visual, somatosensory, and motor cortices? Evolution of Nervous Systems, vol. 2, Non-Mammalian Vertebrates, Kaas, J.H. and Bullock, T.H., Eds., Amsterdam, 2007, pp. 164–185.

  24. Iwaniuk, A.N. and Wylie, D.R.W., The evolution of stereopsis and the Wulst in caprimulgiform birds: a comparative analysis, J. Comp. Physiol. A, 2006, vol. 192, 1313–1326.

    Article  Google Scholar 

  25. Wylie, D.R., Gutiérrez-Ibáňez, C., and Iwaniuk, A., Integrating brain, behavior, and phylogeny to understand the evolution of sensory systems in birds, Front. Neurosci., 2015, vol. 9, p. 281. doi: 19.3389.fnins.2015.é00281

    Article  PubMed  PubMed Central  Google Scholar 

  26. Jarvis, E.D., Yu, J., Rivas, M.V., Horita, H., Feenders, G., Whitney, O. et al., Global view of the functional molecular organization of the avian cerebrum: mirror images and functional columns, J. Comp. Neurol., 2013, vol. 521, pp. 3614–3665.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Briscoe, S.D. and Ragsdale, C.W., Molecular anatomy of the alligator dorsal telencephalon, J. Comp. Neurol., 2018, vol. 526, pp. 1613–1646.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Miceli, D., Gioani, H., Repérant, J., and Peyrichoux, J., The avian visual system. I. An anatomical study of afferent and efferent pathways. II. An electrophysiological study of the functional properties of single neurons, Neural Mechanisms of Behavior in the Pigeon, Plenum Publ. Corp., 1979, pp. 223–254.

  29. Nixdorf, B.E. and Bischof, H.-J., Afferent connections of the ectostriatum and visual Wulst in the zebra finch (Taeniopyggia guttata Gould), an HRP study, Brain Res., 1982, vol. 248, pp. 9–17.

    Article  CAS  PubMed  Google Scholar 

  30. Watanabe, M., Ito, H., and Masai, H., Cytoarchitecture and visual receptive neurons in the Wulst of japanise quail (Coturnix coturnicx japonica), J. Comp. Neurol., 1983, vol. 213, pp. 188–198.

    Article  CAS  PubMed  Google Scholar 

  31. Bagnoli, P. and Burkhalter, A., Organization of the afferent projections to the Wulst in the pigeon, J. Comp. Neurol., 1983, vol. 214, pp. 103–113.

    Article  CAS  PubMed  Google Scholar 

  32. Ehrlich, D. and Stuchbery, J., A note on the projection from the rostral thalamus to the visual hyperstriatum of the chicken (Gallus gallus), Exp. Brain Res., 1986, vol. 62, pp. 207–211.

    Article  CAS  PubMed  Google Scholar 

  33. Bagnoli, P., Fontanesi, G., Casini, G., and Porciatti, V., Binocularity in the little owl, Athene noctua. I. Anatomical investigation of the thalamo-Wulst pathway, Brain Behav. Evol., 1990, vol. 35, pp. 31–39.

    Article  CAS  PubMed  Google Scholar 

  34. Miceli, D., Marchand, L., Repérant, J., and Rio, J.-P., Projections of the dorsolateral anterior complex and adjacent thalamic nuclei upon the visual Wulst in the pigeon, Brain Res., 1990, vol. 518, pp. 317–323.

    Article  CAS  PubMed  Google Scholar 

  35. Wu, C.C. and Karten, H.J., The thalamohyperstriatal system is established by the time of hatching in chicks (Gallus gallus): a cholera toxin B subunit, Vis. Res., 1998, vol. 15, pp. 349–358.

    CAS  Google Scholar 

  36. Koshiba, M., Yohda, M., and Nakamura, S., Topological relation of chick thalamofugal visual projections with hyperpallium revealed by three color tracers, Neurosci. Res., 2005, vol. 52, pp. 235–242.

    Article  PubMed  Google Scholar 

  37. Miceli, D., Repérant, J., Ward, R., Rio, J.-P., Jay, B., Medina, M., and Kenigfest, N.B., Fine structure of the visual dorsolateral anterior thalamic nucleus of the pigeon (Columba livia): a hodological and GABA-immunocytochemical study, J. Comp. Neurol., 2008, vol. 507, pp. 1351–1378.

    Article  PubMed  Google Scholar 

  38. Krubichler, Q., Vega-Zuniga, T., Morales, C., Luksch, H., and Marin, G., The visual system of paleognathous bird: visual field, retina, topography and retino-central connections in the Chilean tinamou (Nothoprocta perdicaria), J. Comp. Neurol., 2015, vol. 523, pp. 226–250.

    Article  Google Scholar 

  39. Bischof, H.J., Eckmeier, D., Keary, N., Lowel, S., Mayer, U., and Michael, N., Multiple visual representation in the visual Wulst of a laterally eyed bird, the zebra finch (Taeniopygia guttata), PLOS ONE, 2016, vol. 11. e0 154927. doi: 10.137

    Article  CAS  Google Scholar 

  40. Boxer, M.I. and Stanford, D., Projections to the posterior visual hyperstriatal region in the chick: an HRP study, Exp. Brain Res., 1985, vol. 57, pp. 494–498.

    Article  CAS  PubMed  Google Scholar 

  41. Trottier, C., Repérant, J., and Miceli, D., Anatomical evidence of a retino-thalamo-hippocampal pathway in the pigeon (Columba livia), J. Hirnforsch., 1995, vol. 36, pp. 489–500.

    CAS  PubMed  Google Scholar 

  42. Heyers, D., Manns, M., Luksch, H., Gűntűrkűn, O., and Mountsen, H., A visual pathway links brain structures active during magnetic compass orientation in migratory birds, PLOS ONE, 2007, vol. 2, e. 937. doi: 10.137

    Article  Google Scholar 

  43. Felch, D.L. and Van Hooser, S.D., Molecular compartmentalization of lateral geniculate nucleus in the gray squirrel (Sciurus carolinenesis), Front. Neuroanat., 2012, vol. 6, p. 12. doi https://doi.org/10.3389/fnana.2012.00012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Huber, G.C. and Crosby, E.C., The nuclei and fibre paths of the avian diencephalon with consideration of telencephalic and certain mesencephalic centres and connections, J. Comp. Neurol., 1929, vol. 48, pp. 1–225.

    Article  Google Scholar 

  45. Ahn, J.H., Park, J.H., Choi, S.Y., Lee, T.-K., Cho, J.H., Kim, I.H., Lee, J.-C., et al., The distribution of calbindin D-28k and parvalbumin immunoreactive neurons in the somatosensory area of the pigeon pallium, Anat. Histol. Embryol., 2018, vol. 47, pp. 64–70.

    Article  CAS  PubMed  Google Scholar 

  46. Tömbol, T. and Magloczky, Z., Cytoarchitecture of chicken Wulst: a Golgi study on cell types and their maturation after hatching, Acta Morph. Hung., 1990, vol. 38, pp. 35–53.

    Google Scholar 

  47. Srivastava, U.C. and Gaur, P., Naturally occuring neuronal plasticity in visual Wulst of the baya weaver, Ploceus phillipinus (Limnaeus, 1766), Cell. Tissue Res., 2013, vol. 352, pp. 445–467.

    Article  CAS  PubMed  Google Scholar 

  48. Chand, P., Maurya, R.C., and Srivastava, U.C., Neuronal morphology and spine density of the visual Wulst of the strawberry finch Estrilda amandava, Proc. Nat. Acad. Sci. India Sect. B. Biol. Sci., 2013, vol. 83, pp. 627–642.

    Article  Google Scholar 

  49. Bravo, H. and Pettigrew, J.H., The distribution of neurons projecting from the retina and visual cortex to the thalamus and tectum opticum of the barn owl, Tyto alba, and Speotyto cunicularia, J. Comp. Neurol., 1981, vol. 199, pp. 419–441.

    Article  CAS  PubMed  Google Scholar 

  50. Revzin, A.M., A specific visual projection area in the hyperstriatum of the pigeon (Columba livia), Brain Res., 1969, vol. 15, pp. 246–249.

    Article  CAS  PubMed  Google Scholar 

  51. Guselnikov, V.I., Morenkov, E.D., and Hun, D.K., Reactions and properties of receptive fields of neurons in a visual projective zone of a hyperstriatum, Neirofiziol., 1976, vol. 8, pp. 230–236.

    CAS  Google Scholar 

  52. Morenkov, E.D. and Hun Do Kong, Pulse reactions of neurons of hyperstriatum department of a brain of crows of Corvus corone to visual incentives, Zh. Evol. Biokhim. Fiziol., 1977, vol. 13, pp. 69–74.

    CAS  PubMed  Google Scholar 

  53. Pettigrew, J.D., Binocular visual pathway in the owls telencephalon, Proc. R. Soc. Lond. B. Biol. Sci., 1979, vol. 204, pp. 435–454.

    Article  CAS  PubMed  Google Scholar 

  54. Pinto, L. and Baron, J., Spatiotemporal frequency tuning dynamics of neurons in the owl visual Wulst, J. Neurophysiol., 2010, vol. 103, pp. 3424–3436.

    Article  PubMed  Google Scholar 

  55. Hodos, W. and Bonbright, J.C., Intensity difference thresholds in pigeon after lesion of the tectofugal and thalamofugal pathways, J. Comp. Physiol. Psychol., 1974, vol. 87, pp. 1013–1031.

    Article  CAS  PubMed  Google Scholar 

  56. Budzynski, C.A., Gagliardo, A., Ioale, P., and Bingman, V.P., Participation of the homing pigeon thalamofugal visual pathway in sun-compass associative learning, J. Neurosci., 2002, vol. 15, pp. 197–210.

    Google Scholar 

  57. Budzynski, C.A. and Bingman, V.P., Participation of the thalamofugal visual pathway in a coarse pattern discrimination task in an open arena, Behav. Brain Res., 2004, vol. 153, pp. 543–556.

    Article  PubMed  Google Scholar 

  58. Shimizu, T., Patton, T.B., and Husband, S.A., Avian visual behavior and the organization of the telencephalon, Brain Behav. Evol., 2010, vol. 75, pp. 204–217.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Watanabe, S., Mayer, U., and Bischof, H.J., Visual Wulst analyses “where” and entopallium analyses “what” in zebra finch visual system, Behav. Brain Res., 2011, vol. 222, pp. 51–56.

    Article  PubMed  Google Scholar 

  60. Zorina, Z.A. and Obidina, T.G., New data about the brain and cognitive abilities of birds, Biol. Byul., 2012, vol. 39, pp. 601–617.

    Article  Google Scholar 

  61. Nauta, W.J.H. and Karten, H.J., A general profile of the vertebrate with side lights on the ancestry of cerebral cortex, The Neurosciences: Second Program, New York, 1970, pp. 6–27.

  62. Shimizu, T., Cox, K., and Karten, H.J., Intratelencephalic projections of the visual Wulst in pigeons (Columba livia), J. Comp. Neurol., 1995, vol. 359, pp. 551–572.

    Article  CAS  PubMed  Google Scholar 

  63. Reiner, A., You are who you talk with—a commentary on Dugas-Ford et al. PNAS, 2012, Brain Behav. Evol., 2013, vol. 81, pp. 146–149.

    Article  PubMed  Google Scholar 

  64. Karten, H.J., Vertebrate brains and evolutionary connectomics: on the origins of mammalian “neocortex”, Phil. Trans. R. Soc. Lond. B. Biol. Sci., 2015, vol. 370 (1684). doi: https://doi.org/10.1098/rstb,2015.0060.

    Google Scholar 

  65. Kumamoto, T. and Hanashima, C., Neuronal subtype specification in establishing mammalian neocortical circuits, Neurosci. Res., 2014, vol. 86, pp. 37–49.

    Article  PubMed  Google Scholar 

  66. Dugas-Ford, J., Powell, J.J., and Ragsdale, C.W., Cell-type homologies and the origin of the neocortex, PNAS, 2012, vol. 109, pp. 16974–16979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Dugas-Ford, J. and Ragsdale, C.W., Levels of homology and problem of neocortex, Ann. Rev. Neurosci., 2015, vol. 38, pp. 351–368.

    Article  CAS  PubMed  Google Scholar 

  68. Wada, K., Chen, C.-C., and Jarvis, E.D., Molecular profiling reveals insight into avian brain organization and functional columnar commonalities with mammals, Brain Evolution by Design, Springer, 2017, pp. 273–289.

  69. Jones, E.G., Viewpoint: the core and matrix of thalamic organization, Neurosci., 1998, vol. 85, pp. 331–345.

    Article  CAS  Google Scholar 

  70. Goodchild, K. and Martin, P.R., The distribution of calcium-binding proteins in the lateral geniculate nucleus and visual cortex of a New World monkey, the marmoset, Callithrix jacchus, Vis. Neurosci., 1998, vol. 15, pp. 625–642.

    Article  CAS  PubMed  Google Scholar 

  71. Hof, P.R., Glezer, I.I., Conde, F., Flagg, R.A., Rubin, M.B., Nimchinsky, E.A., and Vogt Weisenhorn, D.M., Cellular distribution of the calciumbinding proteins parvalbumin, calbindin and calretinin in the neocortex of mammals: phylogenetic and developmental patterns, J. Chem. Neuronat., 1999, vol. 16, pp. 77–116.

    Article  CAS  Google Scholar 

  72. Latawiec, D., Martin, K.A.C., and Meskenaitl, V., Termination of the geniculocortical projection in the striate cortex of macaque monkey: a quantitative immunoelectron microscopic study, J. Comp. Neurol., 2000, vol. 419, pp. 306–319.

    Article  CAS  PubMed  Google Scholar 

  73. Ishida, J.M., Rosa, M.G.P., and Casagrande, N.A., Does the visual system of the flying fox resemble that of primates? The distribution of calcium-binding proteins in the primary visual pathway of Pteropus poliocephalus, J. Comp. Neurol., 2000, vol. 417, pp. 73–87.

    Article  Google Scholar 

  74. Park, H.-J., Lee, S.N., Lim, H.R., Kong, J.H., and Jeon, C.J., Calcium binding proteins calbindin D 28k, calretinin, and parvalbumin in the rabbit visual cortex, Mol. Cells, 2000, vol. 10, pp. 206–212.

    Article  CAS  PubMed  Google Scholar 

  75. Wong, P. and Kaas, J.H., Architectonic subdivisions of neocortex in the gray squirrel (Sciurus carolinensis), Anat. Rec., 2008, vol. 291, pp. 1301–1033.

    Article  Google Scholar 

  76. Wong, P. and Kaas, J.H., Architectonic subdivisions of neocortex in the tree shrew (Tupaia belangeri), Anat. Rec., 2009, vol. 292, pp. 994–1027.

    Article  Google Scholar 

  77. Balaram, P., Young, N.A., and Kaas, J.H., Histological features of layers and sublayers in cortical visual areas V 1 and V 2 of shimpanzees, macaque monkeys, and human, Eye Brain. 6 (Suppl. 1), 2014, pp. 5–18.

    Article  PubMed Central  Google Scholar 

  78. Kim, H.G., Gu, Y.N., Lee, K.P., Kim, C.W., Lee, J.W., Jeong, T., and Jeon, C.J., Immunocytochemical localization of the calcium-binding proteins calbindin D 28k, calretinin and parvalbumin in bat visual cortex, Histol. Histopathol., 2016, vol. 31, pp. 317–327.

    CAS  PubMed  Google Scholar 

  79. Mulikin, W.H., Jones, J.P., and Palmer, L.A., Receptive-field properties and laminar distribution of X-like and Y-like simple cells in cat area 17, J. Neurophysiol., 1984, vol. 52, pp. 350–371.

    Article  Google Scholar 

  80. Hendry, S.H.C. and Carder, R.K., Neurochemical compartmentalization of monkey and human visual cortex similarities and variations in calbindin immunoreactivity across species, Vis. Neurosci., 1993, vol. 10, pp. 1109–1120.

    Article  CAS  PubMed  Google Scholar 

  81. Garey, L.J., Winkelmann, E., and Brauer, K., Golgi and Nissl studies of the visual cortex of the bottlenose dolphin, J. Comp. Neurol., 1985, vol. 240, pp. 305–321.

    Article  CAS  PubMed  Google Scholar 

  82. Morgane, P.J., Glezer, I.I., and Jacobs, M.S., Visual cortex of the dolphin: an image analysis study, J. Comp. Neurol., 1988, vol. 273, pp. 3–25.

    Article  CAS  PubMed  Google Scholar 

  83. Glezer, I.I., Hof, P.R., and Morgane, P.J., Comparative analysis of calcium-binding protein-immunoreactive neuronal populations in the auditory and visual systems of the bottlenose dolphin (Tursiops truncate) and the macaque monkey (Macaca fascicularis), J. Chem. Neuroanat., 1998, vol. 15, pp. 203–237.

    Article  CAS  PubMed  Google Scholar 

  84. Hof, P.R. and Sherwood, C.C., The evolution of neuronal classes of the neocortex of mammals, Evolution of Nervous System, Kaas, I.H. and Krubitzer, L.A., Eds., Amsterdam, vol. 3, 2007, pp. 114–124.

  85. Furutani, R., Laminar and cytoarchitectonic features of the cerebral cortex in the Rosso’s dolphin (Grampus griseus), striped dolphin (Stenella coeruleo alba) and bottlenose dolphin (Tursiops truncatus), J. Anat., 2008, vol. 213, pp. 241–248.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Butti, C., Radhanti, M.A., Sherwood, C.C., and Hof, P.R., The neocortex of cetaceans: comparison with other aquatic and terrestrial species, Ann. N.Y. Acad. Sci., 2011, vol. 1225, pp. 47–58.

    Article  PubMed  Google Scholar 

  87. Kaas, J.H., Neocortex in early mammals and its subsequent variations, Ann. N.Y. Acad. Sci., 2011, vol. 1225, pp. 28–36.

    Article  PubMed  Google Scholar 

  88. Kaas, J.H., The evolution of brains from early mammals to human, Wires Cog. Sci., 2013, vol. 4, pp. 33–45.

    Article  Google Scholar 

  89. Spocter, M.A., Patzke, N., and Manger, P., Cetacean brains, Reference Module in Neuroscience and Biobehavioral Psychology, Elsevier, 2017, pp. 1–6.

  90. Revishchin, A.V. and Garey, L.J., Laminar distribution of cytochrome oxidase staining in cetacean isocortex, Brain Behav. Evol., 1991, vol. 37, pp. 355–367.

    Article  CAS  PubMed  Google Scholar 

  91. Suzuki, I.K. and Hirata, T., Evolutionary conservation of neocortical neurogenetic program in the mammals and birds, Bioarchitecture, 2012, vol. 2, pp. 124–129.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Suzuki, I.K. and Hirata, T., Neocortical neurogenesis is not really “neo”: a new evolutionary model derived from a comparative study of chick pallial development, Develop. Growth Diff., 2013, vol. 55, pp. 173–187.

    Article  Google Scholar 

  93. Smith, L.M., Ebner, F.F., and Colonnier, M., The thalamocortical projection in Pseudemys turtles: a quantitative electron microscopic study, J. Comp. Neurol., 1980, vol. 90, pp. 445–461.

    Article  Google Scholar 

  94. Reiner, A., A comparison of neurotransmitter-specific and neuropeptide-specfic neuronal cell types present in the dorsal cortex in turtles with those present in the isocortex in mammals: implications for the evolution of isocortex, Brain Behav. Evol., 1991, vol. 38, pp. 53–91.

    Article  CAS  PubMed  Google Scholar 

  95. Ulinski, P.S., Visual cortex of turtles, Evolution of Nervous System. Non-mammalian Vertebrates, vol. 2, Amsterdam, 2007, pp. 195–203.

  96. Treves, A., Computational constraints that may have favoured the lamination of sensory cortex, J. Comput. Neurosci., 2003, vol. 14, pp. 271–282.

    Article  PubMed  Google Scholar 

  97. Desfilis, E., Abellán, A., Sentandren, V., and Medina, L., Expression of regulatory genes in the embryonic brain of lizard and implications for understanding pallial organization and evolution, J. Comp. Neurol., 2018, vol. 526, pp. 166–202.

    Article  CAS  PubMed  Google Scholar 

  98. Chen, Y. and Naito, J., Morphological properties of chick retinal ganglion cells in relation to their central projections, J. Comp. Neurol., 2009, vol. 514, pp. 117–130.

    Article  PubMed  Google Scholar 

  99. Johnson, J.K. and Casagrande, V.A., Distribution of calcium-binding proteins within the parallel visual pathways of a primate (Galago crassicaudatus), J. Comp. Neurol., 1995, vol. 356, pp. 238–260.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was implemented within the state assignment no. AAAA—F18/63 “Neurophysiological mechanisms involved in the regulation of functions and their evolution”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Belekhova.

Ethics declarations

All applicable international, national and institutional principles of handling and using experimental animals for scientific purposes were observed.

This study did not involve human subjects as research objects.

Additional information

Russian Text © The Author(s), 2019, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2019, Vol. 55, No. 4, pp. 282–294.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belekhova, M.G., Kenigfest, N.B., Vasilyev, D.S. et al. Distribution of Calcium-Binding Proteins and Cytochrome Oxidase Activity in the Projective Zone (Wulst) of the Pigeon Thalamofugal Visual Pathway: A Discussion in the Light of Current Concepts on Homology between the Avian Wulst and the Mammalian Striate (Visual) Cortex. J Evol Biochem Phys 55, 313–328 (2019). https://doi.org/10.1134/S0022093019040070

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093019040070

Key words

Navigation