Skip to main content
Log in

Tubular protein uptake pattern in the frog model (Rana temporaria): The effect of previous protein loading

  • Comparative and Ontogenic Physiology
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

The effect of increasing protein load on subsequent receptor-mediated protein uptake was studied in the kidney of the common frog Rana temporaria L. Results of in vivo experiments were analyzed in fixed kidney sections using fluorescent or confocal microscopy and immunohistochemistry. Lysozyme was used for daily tubular loading in short-term experiments. Reabsorption of yellow fluorescent protein (YFP) in the proximal tubule (PT) was tested 60 min after introduction into the dorsal lymphatic sac. YFP uptake decreased progressively with increasing duration of lysozyme preload from 2 to 4 days. Lysozyme loading and single protein injections did not change the morphological characteristics of frog glomeruli and PTs, as shown by light and electron microscopy and morphometric analysis. Cessation of loading led to a decrease in the amount of lysozyme accumulated in PT cells. Reduced YFP uptake gradually recovered after cessation of the 4-day load. Restoration of YFP reabsorption was accompanied by increasing expression of endocytic receptors, megalin and cubilin. Based on the data obtained, the frog model can be successfully used for studying both morphological and functional changes in the nephron caused by tubular or glomerular proteinuria and molecular mechanisms involved in the process of renal protein reabsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Verroust, P.J., Birn, H., Nielsen, R., Kozyraki, R., and Christensen, E.I., The tandem endocytic receptors megalin and cubilin are important proteins in renal pathology, Kidney Int., 2002, vol. 62, pp. 745–756.

    Article  CAS  PubMed  Google Scholar 

  2. Christensen, E.I., Verroust, P.J., and Nielsen, R., Receptor-mediated endocytosis in renal proximal tubule, Pflügers Arch., 2009, vol. 458, pp. 1039–1048.

    Article  CAS  PubMed  Google Scholar 

  3. Coudroy, G., Gburek, J., Kozyraki, R., Madsen, M., Trugnan, G., Moestrup, S.K., Verroust, P.J., and Maurice, M., Contribution of cubilin and amnionless to processing and membrane targeting of cubilin–amnionless complex, J. Am. Soc. Nephrol., 2005, vol. 16, pp. 2330–2337.

    Article  CAS  PubMed  Google Scholar 

  4. Amsellem, S., Gburek, J., Hamard, G., Nielsen, R., Willnow, T.E., Devuyst, O., Nexo, E., Ver roust, P.J., Christensen, E.I., and Kozyraki, R., Cubilin is essential for albumin reabsorption in the renal proximal tubule, J. Am. Soc. Nephrol., 2010, vol. 21, pp. 1859–1867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. De, S., Kuwahara, S., and Saito, A., The endocytic receptor megalin and its associated proteins in proximal tubule epithelial cells, Membranes (Basel), 2014, vol. 4, pp. 333–355.

    Article  Google Scholar 

  6. Christensen, E., Raciti, D., Reggiani, L., Verroust, P.J., and Brändli, A.W., Gene expression analysis defines the proximal tubule as the compartment for endocytic receptor-mediated uptake in the Xenopus pronephric kidney, Pflügers Arch., 2008, vol. 456, pp. 1163–1176.

    Article  CAS  PubMed  Google Scholar 

  7. Seliverstova, E.V., Burmakin, M.V., and Natochin, Yu.V., Renal clearance of absorbed intact GFP in the frog and rat intestine, Comp. Biochem. Physiol. A. Mol. Integr. Physiol., 2007, vol. 147, pp. 1067–1073.

    Article  CAS  PubMed  Google Scholar 

  8. Prutskova, N.P. and Seliverstova, E.V., Tubular GFP uptake pattern in the rat and frog kidneys, Comp. Biochem. Physiol. A. Mol. Integr. Physiol., 2011, vol. 160, pp. 175–183.

    Article  CAS  PubMed  Google Scholar 

  9. Prutskova, N.P. and Seliverstova, E.V., Absorption capacity of renal proximal tubular cells studied by combined injections of YFP and GFP in Rana temporaria L., Comp. Biochem. Physiol. A. Mol. Integr. Physiol., 2013, vol. 166, pp. 138–146.

    Article  CAS  PubMed  Google Scholar 

  10. Seliverstova, E.V. and Prutskova, N.P., Reabsorption of yellow fluorescent protein in the Rana temporaria kidney by receptor-mediated endocytosis, J. Evol. Biochem. Physiol., 2014, vol. 50, pp. 522–530.

    Article  CAS  Google Scholar 

  11. Seliverstova, E.V. and Prutskova, N.P., Receptormediated endocytosis of lysozyme in renal proximal tubules of the frog Rana temporaria, Eur. J. Histochem., 2015, vol. 59, pp. 79–86.

    Article  Google Scholar 

  12. Maack, T., Renal handling of low molecular weight proteins, Am. J. Med., 1975, vol. 58, pp. 57–64.

    Article  CAS  PubMed  Google Scholar 

  13. Park, C.H. and Maack, T., Albumin absorption and catabolism by isolated perfused proximal convoluted tubules of the rabbit, J. Clin. Invest., 1984, vol. 73, pp. 767–777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cojocel, C., Maita, K., Baumann, K., and Hook, J.B., Renal processing of low molecular weight proteins, Pflugers Arch., 1984, vol. 401, pp. 333–339.

    Article  CAS  PubMed  Google Scholar 

  15. Christensen, E.I. and Gburek, J., Protein reabsorption in renal proximal tubule-function and dysfunction in kidney pathophysiology, Pediatr. Nephrol., 2004, vol. 19, pp. 714–721.

    Article  PubMed  Google Scholar 

  16. Waldherr, R. and Ritz, E., Edmund Randerath (1899–1961): Experimental proof for the glomerular origin of proteinuria, Kidney Int., 1999, vol. 56, pp. 1591–1596.

    Article  CAS  PubMed  Google Scholar 

  17. Gross, M.L., Hanke, W., Koch, A., Ziebart, H., Amann, K., and Ritz, E., Intraperitoneal protein injection in the axolotl: the amphibian kidney as a novel model to study tubulointerstitial activation, Kidney Int., 2002, vol. 62, pp. 51–59.

    Article  CAS  PubMed  Google Scholar 

  18. Gross, M.L., Piecha, G., Bierhaus, A., Hanke, W., Henle, T., Schirmacher, P., and Ritz, E., Glycated and carbamylated albumin are more “nephrotoxic” than unmodified albumin in the amphibian kidney, Am. J. Physiol. Renal. Physiol., 2011, vol. 301, pp. F476–F485.

    Article  CAS  PubMed  Google Scholar 

  19. van Timmeren, M.M., Gross, M.L., Hanke, W., Klok, P.A., van Goor, H., Stegeman, C.A., and Bakker, S.J., Oleic acid loading does not add to the nephrotoxic effect of albumin in an amphibian and chronic rat model of kidney injury, Nephrol. Dial. Transplant., 2008, vol. 23, pp. 3814–3823.

    Article  PubMed  Google Scholar 

  20. Maack, T., Johnson, V., Kau, S.T., Figueiredo, J., and Sigulem, D., Renal filtration, transport, and metabolism of low-molecular-weight proteins: a review, Kidney Int., 1979, vol. 16, pp. 251–270.

    Article  CAS  PubMed  Google Scholar 

  21. Gekle, M., Renal tubule albumin transport, Annu. Rev. Physiol., 2005, vol. 67, pp. 573–594.

    Article  CAS  PubMed  Google Scholar 

  22. Lee, D., Gleich, K., Fraser, S.A., Katerelos, M., Mount, P.F., and Power, D.A., Limited capacity of proximal tubular proteolysis in mice with proteinuria, Am. J. Physiol. Renal. Physiol., 2013, vol. 304, pp. F1009–F1019.

    Article  CAS  PubMed  Google Scholar 

  23. Prutskova, N.P. and Kutina, A.V., Comparative analysis of fluorescent protein reabsorption in rat and frog kidney, J. Evol. Biochem. Physiol., 2015, vol. 51, pp. 254–258.

    Article  Google Scholar 

  24. Ottosen, P.D., Bode, F., Madsen, K.M., and Maunsbach, A.B., Renal handling of lysozyme in the rat, Kidney Int., 1979, vol. 15, pp. 246–254.

    Article  CAS  PubMed  Google Scholar 

  25. Christensen, E.I. and Maunsbach, A.B., Intralysosomal digestion of lysozyme in renal proximal tubule cells, Kidney Int., 1974, vol.6, pp. 396–407.

    Article  CAS  PubMed  Google Scholar 

  26. Maunsbach, A.B., Giebisch, G.H., and Stanton, B.A., Effects of flow rate on proximal tubule ultrastructure, Am. J. Physiol. Renal. Physiol., 1987, vol. 253, pp. F582–F587.

    CAS  Google Scholar 

  27. Fenoglio, C., Vaccarone, R., Chiari, P., and Gervaso, M.V., An ultrastructural and cytochemical study of the mesonephros of Rana esculenta during activity and hibernation, Eur. J. Morphol., 1996, vol. 34, pp. 107–121.

    Article  CAS  PubMed  Google Scholar 

  28. Richter, S. and Splechtna, H., The structure of anuran podocyte—determined by ecology? Acta Zoologica, 1996, vol. 77, pp. 335–348.

    Article  Google Scholar 

  29. Taugner, R., Schiller, A., and Ntokalou-Knittel, S., Cells and intercellular contacts in glomeruli and tubules of the frog kidney. A freeze-fracture and thin-section study, Cell Tissue Res., 1982, vol. 226, pp. 589–608.

    Article  CAS  PubMed  Google Scholar 

  30. Meseguer, J., García-Ayala, A., López-Ruiz, A., and Esteban, M.A., Structure of the amphibian mesonephric tubule during ontogenesis in Rana ridibunda L. tadpoles: early ontogenetic stages, renal corpuscle formation, neck segment and peritoneal funnels, Anat. Embryol. (Berl), 1996, vol. 193, pp. 397–406.

    Article  CAS  Google Scholar 

  31. Tanner, G.A., Rippe, C., Shao, Y., Evan, A.P., and Williams, J.C. Jr., Glomerular permeability to macromolecules in the Necturus kidney, Am. J. Physiol. Renal Physiol., 2009, vol. 296, pp. F1269–F1278.

    Article  CAS  PubMed  Google Scholar 

  32. Leheste, J.R., Rolinski, B., Vorum, H., Hilpert, J., Nykjaer, A., Jacobsen, C., Aucouturier, P., Moskaug, J.O., Otto, A., Christensen, E.I., and Willnow, T.E., Megalin knockout mice as an animal model of low molecular weight proteinuria, Am. J. Pathol., 1999, vol. 155, pp. 1361–1370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. P. Prutskova.

Additional information

Original Russian Text © E.V. Seliverstova, N.P. Prutskova, 2017, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2017, Vol. 53, No. 3, pp. 192—200.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seliverstova, E.V., Prutskova, N.P. Tubular protein uptake pattern in the frog model (Rana temporaria): The effect of previous protein loading. J Evol Biochem Phys 53, 215–224 (2017). https://doi.org/10.1134/S0022093017030061

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093017030061

Key words

Navigation