Skip to main content
Log in

MODELING OF THE DYNAMICS OF A LIQUID CRYSTAL UNDER THE ACTION OF WEAK PERTURBATIONS

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

We study dynamic processes in liquid crystals using a simplified mathematical model in which a liquid crystal is considered as a finely dispersed continuous medium with rotating particles that has elastic resistance to volume deformation and viscoelastic resistance to the relative rotation of particles. The oscillatory regime of rotational motion described by the Klein–Gordon equation for tangential stress is studied. Moment interactions of particles due to the inhomogeneity of the rotation field are taken into account. The dispersion properties described by a subsystem of two equations for tangential stress and angular velocity are investigated. These equations are used to numerically analyze the rotation field in a liquid crystal under the action of tangential stress caused by the thermal expansion of a metal plate at the boundary. We consider the problem of perturbation of an extended layer of a 5CB liquid crystal by an electric field generated by charges on capacitor plates located periodically along the layer. Singularities of the electric potential at the ends of the capacitor plates are selected explicitly. Some results of computations simulating the Fréedericksz effect in the liquid crystal layer are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

REFERENCES

  1. P. G. de Gennes, The Physics of Liquid Crystals(Clarendon Press, Oxford, 1974).

  2. W. H. de Jeu, Physical Properties of Liquid Crystalline Materials (Gordon and Breach, New York, 1980).

  3. L. M. Blinov, Electro- and Magneto-Optics of Liquid Crystals (Nauka, Moscow, 1978) [in Russian].

  4. V. Fréedericksz and V. Tsvetkov, “On the Orienting Effect of an Electric Field on Molecules of Anisotropic Liquids," Dokl. Akad. Nauk SSSR 2 (7), 528–534 (1935).

  5. C. W. Oseen, “The Theory of Liquid Crystals," Trans. Faraday Soc. 29, 883–899 (1933).

  6. F. C. Frank, “On the Theory of Liquid Crystals," Disc. Faraday Soc. 25 (1), 19–28 (1958).

  7. J. L. Ericksen, “Conservation Laws for Liquid Crystals," Trans. Soc. Rheol. 5 (1), 23–34 (1961).

  8. F. M. Leslie, “Some Constitutive Equations for Liquid Crystals," Arch. Ration. Mech. Anal. 28, 265–283 (1968).

  9. E. Cosserat and F. Cosserat, “Théorie des Corps Déformables," in Chwolson’s Traité Physique (Librairie Sci. A. Hermann et Fils, Paris, 1909), pp. 953–1173.

  10. V. M. Sadovskii and O. V. Sadovskaya, “On the Acoustic Approximation of Thermomechanical Description of a Liquid Crystal," Fiz. Mezomekh. 16 (3), 55–62 (2013) [Phys. Mesomech. 16 (4), 312–318 (2013); https://doi.org/10.1134/S102995991304005X].

  11. S. K. Godunov, Equations of Mathematical Physics(Nauka, Moscow, 1979) [in Russian].

  12. S. Chandrasekhar, Liquid Crystals (Cambridge Univ. Press, 1977).

  13. E. I. Demenev, G. A. Pozdnyakov, and  S. I. Trashkeev, “Nonlinear Orientational Interaction of a Nematic Liquid Crystal with Heat Flux," Pis’ma Zh. Tekh. Fiz. 35 (14), 76–83 (2009) [Tech. Phys. Lett. 35, 674–677 (2009); https://doi.org/10.1134/S1063785009070256].

  14. B. A. Belyaev, N. A. Drokin, V. F. Shabanov, and V. N. Shepov, “Dielectric Anisotropy of 5CB Liquid Crystal in a Decimeter Wavelength Range," Fiz. Tv. Tela 42 (3), 564–566 (2000) [Phys. Solid State 42 (3), 577–579 (2000); https://doi.org/10.1134/1.1131251].

  15. V. Sadovskii and O. Sadovskaya, “Acoustic Approximation of the Governing Equations of Liquid Crystals under Weak Thermomechanical and Electrostatic Perturbations," in Advances in Mechanics of Microstructured Media and Structures (Springer, Cham, 2018), pp. 297–341 (Ser. Adv. Struct. Mater., Vol. 87, Chap. 17); https://doi.org/10.1007/978-3-319-73694-5_17.

  16. I. V. Smolekho, O. V. Sadovskaya, and V. M. Sadovskii, “Numerical Modeling of Acoustic Waves in a Liquid Crystal Using CUDA Technology," Vychisl. Tekhnol. 22 (1), 87–98 (2017).

  17. G. V. Ivanov and V. D. Kurguzov, “Schemes for Solving One-Dimensional Problems of the Dynamics of Inhomogeneous Elastic Bodies Based on Approximation by Linear Polynomials," inDynamics of Continuous Media, No. 49 (Inst. of Hydrodynamics, Sib. Branch, USSR Acad. of Sci., Novosibirsk, 1981), pp. 27–44.

  18. G. V. Ivanov, Yu. M. Volchkov, I. O. Bogul’skii, S. A. Anisimov, and V. D. Kurguzov, Numerical Solution of Dynamic Problems of Elastoplastic Deformation of Solids (Sib. Univ. Izd., Novosibirsk, 2002).

  19. K. Skarp, S. T. Lagerwall, and B. Stebler, “Measurement of Hydrodynamic Parameters for Nematic 5CB," Mol. Cryst. Liquid. Cryst. 60 (3), 215–236 (1980); https://doi.org/10.1080/00268948008072401

  20. V. M. Sadovskii, O. V. Sadovskaya, and I. V. Smolekho, “Numerical Modeling of the Dynamic Processes in Liquid Crystals under the Action of Thermomechanical and Electrostatic Perturbations," AIP Conf. Proc. 2164, 090006-1–090006-8 (2019); https://doi.org/10.1063/1.5130836

  21. I. V. Smolekho, V. M. Sadovskii, O. V. Sadovskaya, and I. V. Kireev, “Accounting for Singularities of the Electric Field Acting on a Liquid Crystal," AIP Conf. Proc. 2302, 090004-1–090004-6 (2020); https://doi.org/10.1063/5.0033515.

  22. V. P. Shibaev, Ya. S. Freidzon, and S. G. Kostromin, “Molecular Architecture and Structure of Thermotropic Liquid Crystal Polymers with Mesogenic Side Groups," in Liquid Crystalline and Mesomorphic Polymers (Springer, New York, 1994), pp. 77–120; https://doi.org/10.1007/978-1-4613-8333-8_3

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Sadovskii.

Additional information

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2021, Vol. 62, No. 1, pp. 193–206.https://doi.org/10.15372/PMTF20210121.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadovskii, V.M., Sadovskaya, O.V. & Smolekho, I.V. MODELING OF THE DYNAMICS OF A LIQUID CRYSTAL UNDER THE ACTION OF WEAK PERTURBATIONS. J Appl Mech Tech Phy 62, 170–182 (2021). https://doi.org/10.1134/S0021894421010211

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894421010211

Keywords

Navigation