Skip to main content
Log in

Magnetohydrodynamic and heat transfer effects on the stagnation-point flow of an electrically conducting nanofluid past a porous vertical shrinking/stretching sheet in the presence of variable stream conditions

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

A steady two-dimensional magnetohydrodynamic stagnation-point flow of an electrically conducting fluid and heat transfer with thermal radiation of a nanofluid past a shrinking and stretching sheet is investigated numerically. The model used for the nanofluid incorporates the effects of the Brownian motion and thermophoresis. A similarity transformation is used to convert the governing nonlinear boundary-layer equations into coupled higher-order nonlinear ordinary differential equations. The result shows that the velocity, temperature, and concentration profiles are significantly influenced by the Brownian motion, heat radiation, and thermophoresis particle deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. B.Ahmadreza, Application of Nanofluid for Heat Transfer Enhancement (Florida Int. Univ., Florida 2013); PID: 2739168, EEE-5425.

    Google Scholar 

  2. K. Hiemenz, “Die Grenzschicht in Einem in Dem Gleichformingen Flussig Keitsstrom Eingetauchten Gerade Kreiszlinder,” Dingler’s Polytech. J. 326, 321–410 (1911).

    Google Scholar 

  3. T. C. Chiam, “Stagnation-Point Flow Towards a Stretching Plate,” J. Phys. Soc. Jpn. 63, 2443–2444 (1994).

    Article  ADS  Google Scholar 

  4. T. R. Mahapatra and A. S. Gupta, “Heat Transfer in Stagnation-Point Flow Towards a Stretching Sheet,” Heat Mass Transfer 38, 517–521 (2002).

    Article  ADS  Google Scholar 

  5. A. Ishak, K. Jafar, R. Nazar, and I. Pop, “MHD Stagnation Point Flow Towards a Stretching Sheet,” Phys. A. Stat. Mech. Appl. 388, 3377–3383 (2009).

    Article  Google Scholar 

  6. S. Nadeem, M. Hussein, and M. Naz, “MHD Stagnation Flow of Amicropolar Fluid through a Porous Medium,” Meccanica 45, 869–880 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  7. S. U. S. Choi and J. A. Eastman, “Enhancing Thermal Conductivity of Fluid with Nanoparticles,” Develop. Appl. Non-Newtonian Flows 231, 99–105 (1995).

    Google Scholar 

  8. J. A. Shercliff, A Textbook of Magnetohydrodynamics (Pergamon Press, Oxford, 1965).

    Google Scholar 

  9. S. K. Nandy and I. Pop, “Effects of Magnetic Field and Thermal Radiation on Stagnation Flow and Heat Transfer of Nanofluid over a Shrinking Surface,” Int. Comm. Heat Mass Transfer 53, 50–55 (2014.)

    Article  Google Scholar 

  10. T. G. Fang and J. Zhang, “Thermal Boundary Layers over a Shrinking Sheet: An Analytical Solution,” Acta Mech. 209, 325–343 (2010).

    Article  MATH  Google Scholar 

  11. S. Goldstein, “On Backward Boundary Layers and Flow in Converging Passages,” J. Fluid Mech. 21 (1), 33–45 (1965).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. M. Miklavcic and C. Y. Wang, “Viscous Flow due to a Shrinking Sheet,” Quart. Appl. Math. 64, 283–290 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  13. C. Y. Wang, “Stagnation Flow Towards a Shrinking Sheet,” Int. J. Nonlinear Mech. 43, 377–382 (2008).

    Article  ADS  Google Scholar 

  14. R. A. Van Gorder, K. Vajravelu, and I. Pop, “Hydromagnetic Stagnation-Point Flow of a Viscous Fluid Over a Stretching/Shrinking Sheet,” Meccanica 47 (1), 31–50 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  15. T. Fang, “Boundary Layer Flow Over a Shrinking Sheet with Power-Law Velocity,” Int. J. Heat Mass Transfer 51, 5838–5843 (2008).

    Article  MATH  Google Scholar 

  16. T. Fang, J. Zhang, and S. Yao, “Viscous Flow Over an Unsteady Shrinking Sheet with Mass Transfer,” Chinese Phys. Lett. 26, 014703 (2009).

    Article  ADS  Google Scholar 

  17. A. Ishak, Y. Y. Lok, and I. Pop, “Stagnation-Point Flow over a Shrinking Sheet in a Micro Polar Fluid,” Chem. Eng. Comm. 197, 1417–1427 (2010).

    Article  Google Scholar 

  18. Y. Y. Lok, A. Ishak, and I. Pop, “MHD Stagnation-Point Flow Towards a Shrinking Sheet,” Int. J. Numer. Methods Heat Fluid Flow 21 (1), 61–72 (2011).

    Article  Google Scholar 

  19. K. Bhattacharyya, S. Mukhopadhyay, and G. C. Layek, “Effects of Suction/Blowing on Steady Boundary Layer Stagnation-Point Flow and Heat Transfer Towards a Shrinking Sheet with Thermal Radiation,” Int. J. Heat Mass Transfer 54, 302–307 (2011).

    Article  MATH  Google Scholar 

  20. K. Bhattacharyya, “Dual Solutions in Boundary Layer Stagnation-Point Flow and Mass Transfer with Chemical Reaction Past a Stretching/Shrinking Sheet,” Int. Comm. Heat Mass Transfer 38, 917–922 (2011).

    Article  Google Scholar 

  21. N. Bachok, A. Ishak, and I. Pop, “Stagnation-Point Flow over a Stretching/Shrinking Sheet in a Nanofluid,” Nanoscale Res. Lett., No. 6, 623–632 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Kandasamy.

Additional information

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 58, No. 1, pp. 82–91, January–February, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kandasamy, R., Balachandar, V.V. & Hasan, S.B. Magnetohydrodynamic and heat transfer effects on the stagnation-point flow of an electrically conducting nanofluid past a porous vertical shrinking/stretching sheet in the presence of variable stream conditions. J Appl Mech Tech Phy 58, 71–79 (2017). https://doi.org/10.1134/S0021894417010084

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894417010084

Keywords

Navigation