Skip to main content
Log in

Optical Properties of Hyperbolic Metamaterials (Brief Review)

  • OPTICS AND LASER PHYSICS
  • Published:
JETP Letters Aims and scope Submit manuscript

Recent studies of optical, magneto-optical, and nonlinear optical effects in hyperbolic metamaterials based on metal nanorods in a dielectric template are reviewed. An increase in the efficiency of the optical second harmonic generation in the spectral vicinity of zero effective permittivity (epsilon near zero) of hyperbolic metamaterials, as well as a jump of the phase of a quadratic nonlinear optical signal, is detected at the transition between elliptic and hyperbolic dispersion regimes. The resonant enhancement of magneto-optical effects in composite magnetic hyperbolic metamaterials in the spectral vicinity of nearly zero effective permittivity is demonstrated. Effects of fast and slow light in the interaction of ultrashort laser pulses with hyperbolic metamaterials are experimentally revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, Nat. Photon. 7, 948 (2013).

    Article  ADS  Google Scholar 

  2. P. Huo, S. Zhang, Y. Liang, Y. Lu, and T. Xu, Adv. Opt. Mater. 7, 1801616 (2019).

  3. Zh. Guo, H. Jiang, and H. Chen, J. Appl. Phys. 127, 071101 (2020).

  4. N. A. Zharova, A. A. Zharov, and A. A. Zharov, Jr., J. Exp. Theor. Phys. 129, 329 (2019).

    Article  ADS  Google Scholar 

  5. L. Ferrari, J. Stephen, Th. Smalley, Y. Fainman, and Zh. Liu, Nanoscale 9, 9034 (2017).

    Article  Google Scholar 

  6. T. Li, V. Nagal, D. H. Gracias, and J. B. Khurgin, Opt. Express 25, 13588 (2017).

    Article  ADS  Google Scholar 

  7. D. Lee, Y. D. Kim, M. Kim, S. So, H.-J. Choi, J. Mun, D. M. Nguyen, T. Badloe, J. D. Ok, K. Kim, H. Lee, and J. Rho, ACS Photon. 5, 2549 (2018).

  8. K. V. Sreekanth, M. ElKabbash, Y. Alapan, E. Ilker, M. Hinczewski, U. A. Gurkan, and G. Strangi, EPJ Appl. Metamat. 4, 1 (2017).

    Google Scholar 

  9. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, Nat. Mater. 8, 867 (2009).

    Article  ADS  Google Scholar 

  10. N. Vasilantonakis, M. E. Nasir, W. Dickson, G. A. Wurtz, and A. V. Zayats, Laser Photon. Rev. 9, 345 (2015).

    Article  ADS  Google Scholar 

  11. L. Ferrari, Ch. Wu, D. Lepage, X. Zhang, and Zh. Liu, Prog. Quantum Electron. 40, 1 (2015).

    Article  Google Scholar 

  12. P. Shekhar, J. Atkinson, and Z. Jacob, Nano Converg. 1 (14), 1 (2014).

    Article  Google Scholar 

  13. R. Atkinson, W. R. Hendren, G. A. Wurtz, W. Dickson, A. V. Zayats, P. Evans, and R. J. Pollard, Phys. Rev. B 73, 235402 (2006).

  14. P. Evans, W. R. Hendren, R. Atkinson, G. A. Wurtz, W. Dickson, A. V. Zayats, and R. J. Pollard, Nanotechnology 17, 5746 (2006).

    Article  ADS  Google Scholar 

  15. A. P. Leontiev, O. Yu. Volkova, I. A. Kolmychek, A. V. Venets, A. P. Pomozov, V. S. Stolyarov, T. V. Murzina, and K. S. Napolskii, Nanomaterials 9, 739 (2019).

    Article  Google Scholar 

  16. S. A. Dyakov, I. M. Fradkin, N. A. Gippius, L. Klompmaker, F. Spitzer, E. Yalcin, I. A. Akimov, M. Bayer, D. A. Yavsin, S. I. Pavlov, A. B. Pevtsov, S. Y. Verbin, and S. G. Tikhodeev, Phys. Rev. B 100, 214411 (2019).

  17. V. I. Belotelov, D. A. Bykov, L. L. Doskolovich, A. N. Kalish, and A. K. Zvezdin, J. Opt. Soc. Am. B 26, 1594 (2009).

    Article  ADS  Google Scholar 

  18. G. Armelles, A. Cebollada, A. Garcia-Martin, J. M. Garcia-Martin, M. U. Gonzales, J. B. Gonzalez-Diaz, E. Ferreiro-Vila, and J. F. Torrado, J. Opt. A: Pure Appl. Opt. 11, 114023 (2009).

  19. I. A. Kolmychek, K. A. Lazareva, E. A. Mamonov, E. V. Skorokhodov, M. V. Sapozhnikov, V. G. Golubev, and T. V. Murzina, Materials 14, 3481 (2021).

    Article  ADS  Google Scholar 

  20. I. A. Kolmychek, T. V. Murzina, A. A. Nikulin, E. A. Gan’shina, and O. A. Aktsipetrov, JETP Lett. 90, 552 (2009).

    Google Scholar 

  21. J. B. Gonzalez-Diaz, A. Garcia-Martin, G. Armelles, J. M. Garcia-Martin, C. Clavero, A. Cebollada, R. A. Lukaszew, J. R. Skuza, D. P. Kumah, and R. Clarke, Phys. Rev. B 76, 153402 (2007).

  22. I. A. Kolmychek, A. N. Shaimanov, A. V. Baryshev, and T. V. Murzina, JETP Lett. 102, 46 (2015).

    Article  ADS  Google Scholar 

  23. A. R. Gazizov, A. V. Kharitonov, and C. C. Kharintsev, JETP Lett. 113, 140 (2021).

    Article  ADS  Google Scholar 

  24. O. Reshef, I. de Leon, M. Z. Alam, and R. W. Boyd, Nat. Rev. Mater. 4, 535 (2019).

    Article  Google Scholar 

  25. M. Z. Alam, I. de Leon, and R. W. Boyd, Science (Washington, DC, U. S.) 352 (6287), 795 (2016).

    Article  ADS  Google Scholar 

  26. M. A. Vincenti, D. de Ceglia, A. Ciattoni, and M. Scalora, Phys. Rev. A 84, 063826 (2011).

  27. X. Wen, G. Li, Ch. Gu, J. Zhao, Sh. Wang, Ch. Jiang, S. Palomba, C. Martijn de Sterke, and Q. Xiong, ACS Photon. 5, 2087 (2018).

  28. A. Capretti, Y. Wang, N. Engheta, and L. dal Negro, ACS Photon. 2, 1584 (2015).

  29. L. Caspani, R. P. M. Kaipurath, M. Clerici, M. Ferrera, T. Roger, J. Kim, N. Kinsey, M. Pietrzyk, A. di Falco, V. M. Shalaev, A. Boltasseva, and D. Faccio, Phys. Rev. Lett. 116, 233901 (2016).

  30. B. Duncan, L. Perret, S. Palomba, M. Lapine, B. T. Kuhlmey, and C. Martijn de Sterke, Sci. Rep. 5, 8983 (2015).

    Article  ADS  Google Scholar 

  31. Y. Sun, Zh. Zheng, J. Cheng, G. Sun, and G. Qiao, Opt. Express 23, 6370 (2015).

    Article  ADS  Google Scholar 

  32. S. Wicharn, S. Plaipichita, Th. Seesanb, and P. Buranasiri, Proc. SPIE 10516, 10516M (2018).

  33. S. Wicharn and P. Buranasiri, Proc. SPIE 10714, 107140H (2018).

  34. P. Kelly and L. Kuznetsova, Appl. Phys. B 124 (4), 1 (2018).

    Article  ADS  Google Scholar 

  35. P. Kelly and L. Kuznetsova, OSA Continuum 3, 3225 (2020).

    Article  Google Scholar 

  36. A. D. Neira, G. A. Wurtz, and A. V. Zayats, Sci. Rep. 5 (1), 1 (2015).

    Google Scholar 

  37. V. B. Novikov, A. P. Leontiev, K. S. Napolskii, and T. V. Murzina, Opt. Lett. 46, 2276 (2021).

    Article  ADS  Google Scholar 

  38. V. Novikov, Proc. SPIE 11769, 117690G (2021).

  39. I. V. Malysheva, I. A. Kolmychek, A. M. Romashkina, A. P. Leontiev, K. S. Napolskii, and T. V. Murzina, Nanotechnology 32, 305710 (2021).

  40. A. R. Pomozov, I. A. Kolmychek, E. A. Gan’shina, O. Yu. Volkova, A. L. Leont’ev, K. S. Napol’skii, and T. V. Murzina, Phys. Solid State 60, 2264 (2018).

    Article  ADS  Google Scholar 

  41. E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 2012).

    Google Scholar 

  42. I. A. Kolmychek, A. R. Pomozov, A. P. Leontiev, K. S. Napolskii, and T. V. Murzina, Phys. Met. Metallogr. 120, 1266 (2019).

    Article  ADS  Google Scholar 

  43. I. A. Kolmychek, I. V. Malysheva, V. B. Novikov, A. P. Leontiev, K. S. Napolskii, and T. V. Murzina, Phys. Rev. B 102, 241405 (2020).

  44. I. A. Kolmychek, A. R. Pomozov, A. P. Leontiev, K. S. Napolskii, and T. V. Murzina, Opt. Lett. 43, 3917 (2018).

    Article  ADS  Google Scholar 

  45. I. A. Kolmychek, A. R. Pomozov, V. B. Novikov, A. P. Leontiev, K. S. Napolskii, and T. V. Murzina, Opt. Express 27, 32069 (2019).

    Article  ADS  Google Scholar 

  46. P. Ginzburg, F. G. Rodriguez Fortuno, G. A. Wurtz, W. Dickson, A. Murphy, F. Morgan, R. J. Pollard, I. Iorsh, A. Atrashchenko, P. A. Belov, Y. S. Kivshar, A. Nevet, G. Ankonina, M. Orenstein, and A. V. Zayats, Opt. Express 21, 14907 (2013).

    Article  ADS  Google Scholar 

  47. A. R. Pomozov, I. A. Kolmychek, V. B. Novikov, A. P. Leontiev, K. S. Napolskii, and T. V. Murzina, J. Phys.: Conf. Ser. 1092, 012058 (2018).

  48. R. Stolle, G. Marowsky, E. Schwarzberg, and G. Berkovic, Appl. Phys. B 63, 491 (1996).

    Article  ADS  Google Scholar 

  49. M. A. Vincenti, M. Kamandi, D. de Ceglia, C. Guclu, M. Scalora, and F. Capolino, Phys. Rev. B 96, 045438 (2017).

  50. I. A. Kolmychek, V. B. Novikov, I. V. Malysheva, A. P. Leontiev, K. S. Napolskii, and T. V. Murzina, Opt. Lett. 45, 1866 (2020).

    Article  ADS  Google Scholar 

  51. M. D. Stenner, D. J. Gauthier, and M. A. Neifeld, Nature (London, U.K.) 425, 695 (2003).

    Article  ADS  Google Scholar 

  52. L. H. Nicholls, F. J. Rodríguez-Fortuño, M. E. Nasir, R. M. Córdova-Castro, N. Olivier, G. A. Wurtz, and A. V. Zayats, Nat. Photon. 11, 628 (2017).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 18-73-10151, and by the Foundation for the Advancement of Theoretical Physics and Mathematics BASIS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Kolmychek.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by R. Tyapaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolmychek, I.A., Malysheva, I.V., Novikov, V.B. et al. Optical Properties of Hyperbolic Metamaterials (Brief Review). Jetp Lett. 114, 653–664 (2021). https://doi.org/10.1134/S0021364021230089

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364021230089

Navigation