Skip to main content
Log in

Simulation of the Quantum Hall Effect in Samples with Weak Long-Range Disorder

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The fine structure of the density of states is studied numerically in the quantum Hall effect mode during the ballistic transmission of an electron through an area of 1 µm2 of a two-dimensional electron gas with weak long-range disorder. The calculated widths of strict quantum plateaus agree with experimental data. Periodic conductance oscillations corresponding to the addition of two electrons to the simulated area are found in the central part of the lower Landau band. One-dimensional countercurrents are found inside the area and at its edge, which are separated by a magnetic length and explained by the motion of an electron with a low drift velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K. von Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45, 494 (1980).

    Article  ADS  Google Scholar 

  2. D. C. Tsui, H. L. Stormer, and A. C. Gossard, Phys. Rev. Lett. 48, 1559 (1982).

    Article  ADS  Google Scholar 

  3. H. Aoki, Rep. Prog. Phys. 50, 655 (1987).

    Article  ADS  Google Scholar 

  4. I. V. Kukushkin and V. B. Timofeev, Adv. Phys. 45, 147 (1996).

    Article  ADS  Google Scholar 

  5. V. T. Dolgopolov, Phys. Usp. 57, 105 (2014).

    Article  ADS  Google Scholar 

  6. M. J. Manfra, Ann. Rev. Condens. Matter Phys. 5, 347 (2014).

    Article  ADS  Google Scholar 

  7. H. Levine, S. Libby, and A. M. M. Pruisken, Phys. Rev. Lett. 51, 1915 (1983).

    Article  ADS  Google Scholar 

  8. K. Shizuya, Phys. Rev. Lett. 73, 2907 (1994).

    Article  ADS  Google Scholar 

  9. A. L. Efros, F. G. Pikus, and V. G. Burnett, Phys. Rev. B 47, 2233 (1993).

    Article  ADS  Google Scholar 

  10. K. Hashimoto, C. Sohrmann, J. Wiebe, T. Inaoka, F. Meier, Y. Hirayama, R. A. Römer, R. Wiesendanger, and M. Morgenstern, Phys. Rev. Lett. 101, 256802 (2008).

    Article  ADS  Google Scholar 

  11. J. R. Bindel, J. Ulrich, M. Liebmann, and M. Morgenstern, Phys. Rev. Lett. 118, 016803 (2017).

    Article  ADS  Google Scholar 

  12. D. B. Chklovskii, B. I. Shklovskii, and L. I. Glazman, Phys. Rev. B 46, 4026 (1992).

    Article  ADS  Google Scholar 

  13. J. Weis and K. von Klitzing, Phil. Trans. R. Soc. A 369, 3954 (2011).

    Article  ADS  Google Scholar 

  14. E. Brezin, D. J. Gross, and C. Itzykson, Nucl. Phys. B 235, 24 (1984).

    Article  ADS  Google Scholar 

  15. I. S. Burmistrov and M. A. Skvortsov, JETP Lett. 78, 156 (2003).

    Article  ADS  Google Scholar 

  16. J. Oswald and R. A. Römer, Phys. Rev. B 96, 125128 (2017).

    Article  ADS  Google Scholar 

  17. W. Zhu and D. N. Sheng, Phys. Rev. Lett. 123, 056804 (2019).

    Article  ADS  Google Scholar 

  18. S. Ilani, J. Martin, E. Teitelbaum, J. H. Smet, D. Mahalu, V. Umansky, and A. Yacoby, Nature (London, U.K.) 427, 328 (2004).

    Article  ADS  Google Scholar 

  19. O. E. Dial, R. C. Ashoori, L. N. Pfeiffer, and K. W. West, Nature (London, U.K.) 448, 176 (2007).

    Article  ADS  Google Scholar 

  20. M. Sammon, M. A. Zudov, and B. I. Shklovskii, Phys. Rev. Mater. 2, 064604 (2018).

    Article  Google Scholar 

  21. J. Nakamura, S. Fallahi, H. Sahasrabudhe, R. Rahman, S. Liang, G. C. Gardner, and M. J. Manfra, Nat. Phys. 15, 563 (2019).

    Article  Google Scholar 

  22. Z. D. Kvon, E. B. Ol’shanestkii, M. I. Katkov, A. E. Plotnikov, A. I. Toropov, N. T. Moshegov, M. Cassé, and J. C. Portal, Semiconductors 33, 1238 (1999).

    Article  ADS  Google Scholar 

  23. O. Couturaud, S. Bonifacie, B. Jouault, D. Mailly, A. Raymond, and C. Chaubet, Phys. Rev. B 80, 033304 (2009).

    Article  ADS  Google Scholar 

  24. N. Pascher, C. Rössler, T. Ihn, K. Ensslin, C. Reichl, and W. Wegscheider, Phys. Rev. X 4, 011014 (2014).

    Google Scholar 

  25. X. Du, I. Skachko, F. Duerr, A. Luican, and E. Y. Andrei, Nature (London, U.K.) 462, 192 (2009).

    Article  ADS  Google Scholar 

  26. A. Grivnin, H. Inoue, Y. Ronen, Y. Baum, M. Heiblum, V. Umansky, and D. Mahalu, Phys. Rev. Lett. 113, 266803 (2014).

    Article  ADS  Google Scholar 

  27. S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge Univ. Press, Cambridge, UK, 1997).

    Google Scholar 

  28. A. Cresti, R. Farchioni, G. Grosso, and G. P. Parravicini, Phys. Rev. B 68, 075306 (2003).

    Article  ADS  Google Scholar 

  29. O. A. Tkachenko, V. A. Tkachenko, Z. D. Kvon, A. L. Aseev, and J.-C. Portal, Nanotechnology 23, 095202 (2012).

    Article  ADS  Google Scholar 

  30. O. A. Tkachenko and V. A. Tkachenko, JETP Lett. 99, 204 (2014).

    Article  ADS  Google Scholar 

  31. O. A. Tkachenko, V. A. Tkachenko, I. S. Terekhov, and O. P. Sushkov, 2D Mater. 2, 014010 (2015).

    Article  ADS  Google Scholar 

  32. O. Tkachenko, V. Tkachenko, Z. Kvon, D. Sheglov, and A. Aseev, in Advances in Semiconductor Nanostructures, Growth, Characterization, Properties and Applications, Ed. by A. Latyshev, A. Dvurechenskii, and A. Aseev (Elsevier, Amsterdam, 2017), p. 131.

  33. O. A. Tkachenko, D. G. Baksheev, V. A. Tkachenko, and O. P. Sushkov, in Proceedings of the International Conference on Actual Problems of Computational and Applied Mathematics (Novosib. Nats. Issled. Univ., Novosibirsk, 2019), pp. 509, 515.

    Google Scholar 

Download references

Acknowledgments

We are grateful to A.R. Hamilton, A.A. Bykov, Z.D. Kvon, G.M. Min’kov, D.G. Polyakov, and I.V. Gornyi for the discussion. Computing resources of the Interdepartmental Supercomputer Center of the Russian Academy of Sciences were used.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Tkachenko.

Additional information

Funding

This work was supported by the Russian Science Foundation (project no. 19-72-30023).

Russian Text © The Author(s), 2020, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2020, Vol. 112, No. 3, pp. 196–202.

Supplemental Material to the article

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tkachenko, O.A., Tkachenko, V.A., Baksheev, D.G. et al. Simulation of the Quantum Hall Effect in Samples with Weak Long-Range Disorder. Jetp Lett. 112, 186–192 (2020). https://doi.org/10.1134/S0021364020150114

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364020150114

Navigation