Skip to main content
Log in

Structural features of a Lennard-Jones system at melting and crystallization

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The structural features of the crystallization and melting of a system of particles whose pair interaction is described by the Lennard-Jones potential have been considered. The bond order parameter method is used to quantitatively describe the orientational short-range order. The rotational invariants of the second (q l ) and third (w l ) orders are calculated for each particle of the system. These calculations require only information on the snapshot of atom positions, which is quite easily obtained in experiments, and provide the distribution functions of particles in q l and w l (where l is the rank of an invariant; the results for l = 4, 6 are presented), which are important characteristics of the phase state of the system. It has been shown that the cumulant of the distribution of particles in w 6 is very sensitive to the destruction/formation of the short-range orientational order in the Lennard-Jones system and, correspondingly, can be used as a criterion of the melting and crystallization of this system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Parisi and F. Zamponi, Rev. Mod. Phys. 82, 789 (2010).

    Article  ADS  Google Scholar 

  2. S. Torquato and F. H. Stillinger, Rev. Mod. Phys. 82, 2633 (2010).

    Article  MathSciNet  ADS  Google Scholar 

  3. A. Blaaderen and P. Wiltzius, Science 270, 1177 (1995).

    Article  ADS  Google Scholar 

  4. U. Gasser, E. R. Weeks, A. Schofield, et al., Science 292, 5515 (2001).

    Article  Google Scholar 

  5. V. E. Fortov and G. E. Morfill, Complex and Dusty Plasmas: From Laboratory to Space (CRC Press, Boca Raton, 2010).

    Google Scholar 

  6. M. Rubin-Zuzic, G. E. Morfill1, A. V. Ivlev, et al., Nature Phys. 2, 181 (2006).

    Article  ADS  Google Scholar 

  7. B. A. Klumov, Phys. Usp. 53, 1053 (2010).

    Article  ADS  Google Scholar 

  8. S. A. Khrapak, B. A. Klumov, P. Huber, et al., Phys. Rev. Lett. 106, 205001 (2011).

    Article  ADS  Google Scholar 

  9. J. E. Lennard-Jones, Proc. R. Soc. A 106, 463 (1924).

    Article  ADS  Google Scholar 

  10. P. Steinhardt, D. Nelson, and M. Ronchetti, Phys. Rev. Lett. 47, 1297 (1981).

    Article  ADS  Google Scholar 

  11. P. Steinhardt, D. R. Nelson, and M. Ronchetti, Phys. Rev. B 28, 784 (1983).

    Article  ADS  Google Scholar 

  12. P. R. ten Wolde, R. J. Ruiz-Montero, and D. Frenkel, J. Chem. Phys. 104, 9932 (1996).

    Article  ADS  Google Scholar 

  13. A. C. Mitus and A. Z. Patashinskii, Phys. Lett. A 87, 179 (1982); A. C. Mitus and A. Z. Patashinskii, Phys. Lett. A 88, 31 (1983).

    Article  ADS  Google Scholar 

  14. A. C. Mitus, D. Marx, S. Sengupta, et al., J. Phys.: Condens. Matter 5, 8509 (1993).

    Article  ADS  Google Scholar 

  15. B. Smit and D. Frenkel, Understanding Molecular Simulation (Academic, San Diego, 2002).

    Google Scholar 

  16. J. R. Errington, P. G. Debenedetti, and S. Torquato, J. Chem. Phys. 118, 2256 (2003).

    Article  ADS  Google Scholar 

  17. S. Torquato, T. M. Truskett, and P. G. Debenedetti, Phys. Rev. Lett. 84, 2064 (2000).

    Article  ADS  Google Scholar 

  18. V. Luchnikov, A. Gervois, P. Richard, et al., J. Mol. Liq. 96, 185 (2002).

    Article  Google Scholar 

  19. Y. Jin and H. A. Makse, Physica A 98, 5362 (2010).

    Article  MathSciNet  ADS  Google Scholar 

  20. B. A. Klumov, S. A. Khrapak, and G. E. Morfill, Phys. Rev. B 83, 184105 (2011).

    Article  ADS  Google Scholar 

  21. T. Kawasaki and H. Tanaka, J. Phys.: Condens. Matter 22, 232102 (2010).

    Article  ADS  Google Scholar 

  22. B. A. Klumov and G. Morfill, JETP Lett. 96, 444 (2009); B. A. Klumov and G. Morfill, JETP Lett. 107, 908 (2008).

    Article  ADS  Google Scholar 

  23. S. Mitic, B. A. Klumov, U. Konopka, et al., Phys. Rev. Lett. 101, 125002 (2008).

    Article  ADS  Google Scholar 

  24. B. A. Klumov, P. Huber, S. Vladimirov, et al., Plasma Phys. Contol. Fusion 51, 124028 (2009); B. A. Klumov, G. Joyce, C. Rath, et al., Eur. Phys. Lett. 92, 15003 (2010).

    Article  ADS  Google Scholar 

  25. S. A. Khrapak, B. A. Klumov, P. Huber, et al., Phys. Rev. E 85, 066407 (2012).

    Article  ADS  Google Scholar 

  26. H. J. Raveche, R. D. Mountain, and W. B. Streett, J. Chem. Phys. 61, 1970 (1974).

    Article  ADS  Google Scholar 

  27. J. P. Hansen and I. R. McDonald, Theory of Simple Liquids (Elsevier, New York, 2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © B.A. Klumov, 2013, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2013, Vol. 97, No. 6, pp. 372–377.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klumov, B.A. Structural features of a Lennard-Jones system at melting and crystallization. Jetp Lett. 97, 327–332 (2013). https://doi.org/10.1134/S0021364013060106

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364013060106

Keywords

Navigation