Skip to main content
Log in

Nonextensive statistical analysis of the data on the high-speed impact fracture of solids

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The high-speed detection of impact-induced cracks in samples of materials that differ strongly in their degree of homogeneity (fused quartz and granite) has been performed by the acoustic emission method. The experimental energy distributions of the acoustic emission signals that correspond to the energy distribution in the events of the nucleation, growth, and coalescence of the microcracks have been interpreted in terms of the Tsallis statistics, which has been developed to generalize classical thermodynamics over the case of nonequilibrium systems. This allowed us to estimate the degree of correlation in the process of crack formation and to compare the energy release densities in various materials and at various stages of the impact fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. B. Mandelbrot, Int. J. Fracture 138, 13 (2006).

    Article  MATH  Google Scholar 

  2. P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. Lett. 59, 381 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  3. A. Chmel, in Progress in Statistical Mechanics Research, Ed. by J. S. Moreno (Nova Science, New York, 2007), Ch. 5, p. 257.

    Google Scholar 

  4. A. Carpinteri, G. Lacidogna, and N. Pugno, Int. J. Fracture 129, 131 (2004).

    Article  Google Scholar 

  5. N. N. Gorobei, A. S. Luk’yanenko, and A. E. Chmel’, J. Exp. Theor. Phys. 101, 468 (2005).

    Article  ADS  Google Scholar 

  6. C. Tsallis, J. Stat. Phys. 52, 479 (1988).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. C. Tsallis, Introduction to Nonextensive Statistical Mechanics-Approaching a Complex World (Springer, New York, 2009).

    MATH  Google Scholar 

  8. O. Sotolongo-Costa and A. Posadas, Phys. Rev. Lett. 92, 048501 (2004).

    Article  ADS  Google Scholar 

  9. L. Telesca, Physica A 389, 1911 (2010).

    Article  ADS  Google Scholar 

  10. G. Balasis, I. A. Daglis, A. Anastasiadis, et al., Physica A 390, 341 (2011).

    Article  ADS  Google Scholar 

  11. Y. Kawaguchi, Phys. Rev. B 52, 9224 (1995).

    Article  ADS  Google Scholar 

  12. V. I. Vettegren’, A. Ya. Bashkarev, R. I. Mamalimov, and I. P. Shcherbakov, Phys. Solid State 50, 28 (2008).

    Article  ADS  Google Scholar 

  13. V. I. Vettegren’, V. S. Kuksenko, and I. P. Shcherbakov, Tech. Phys. 31, 577 (2011).

    Article  Google Scholar 

  14. E. Bouchaud, B. Chiaia, A. Hansen, et al., Int. J. Fracture 140, 1 (2006).

    Article  Google Scholar 

  15. E. Bouchaud, J. Phys.: Condens. Matter 9, 4319 (1997).

    Article  ADS  Google Scholar 

  16. M. J. Alava, P. K. N. N. Nukala, and S. Zapperi, Adv. Phys. 55, 349 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Chmel.

Additional information

Original Russian Text © I.P. Shcherbakov, V.S. Kuksenko, A.E. Chmel, 2011, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2011, Vol. 94, No. 5, pp. 410–413.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shcherbakov, I.P., Kuksenko, V.S. & Chmel, A.E. Nonextensive statistical analysis of the data on the high-speed impact fracture of solids. Jetp Lett. 94, 378–381 (2011). https://doi.org/10.1134/S0021364011170152

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364011170152

Keywords

Navigation