Skip to main content
Log in

Investigation of the SiO2(Co)/GaAs heterostructures using the surface scattering of synchrotron radiation

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The giant injection magnetoresistive effect has been observed in a granulated Co/SiO2 film on a semiconductor GaAs substrate in a narrow temperature range near T = 300 K. According to the existing theory, the nature of the effect is due to the structure and physical problems of the interface layer. The spatial distribution of cobalt nanoparticles in the bulk of the Co/SiO2 granular film and at the granular film/semiconductor substrate (GF/SS) interface has been investigated by the reflectometry and small-angle scattering of synchrotron radiation in the grazing geometry. It has been shown that the characteristic average distance between the cobalt granules in the bulk of the film is 7.3 nm. At the same time, the average distance between the granules with a vertical size of about 7.5 nm at the GF/SS interface is 32 nm. The experimental data indicate the low concentration of cobalt at the interface and the point character of the contact of the main bulk of the Co/SiO2 film with the GaAs substrate through a relatively diluted layer of ferromagnetic cobalt granules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Wolf, D. D. Awschalom, R. A. Buhrman, et al., Science 294, 1488 (2001).

    Article  ADS  Google Scholar 

  2. B. Huang, D. J. Monsma, and I. Appelbaum, Phys. Rev. Lett. 99, 177209 (2007).

    Article  ADS  Google Scholar 

  3. I. Appelbaum, B. Huang, and D. J. Monsma, Nature 447, 295 (2007).

    Article  ADS  Google Scholar 

  4. B. Huang, D. J. Monsma, and I. Appelbaum, Appl. Phys. Lett. 91, 072501 (2007).

    Article  ADS  Google Scholar 

  5. R. Flederling, M. Kelm, G. Reuseher, et al., Nature 402, 787 (1999).

    Article  ADS  Google Scholar 

  6. Y. Ohno, K. Young, B. Beschoten, et al., Nature 402, 790 (1999).

    Article  ADS  Google Scholar 

  7. H. Akinaga, M. Mizuguchi, K. Ono, and M. Oshima, Appl. Phys. Lett. 76, 357 (2000).

    Article  ADS  Google Scholar 

  8. H. Akinaga, Semicond. Sci. Technol. 17, 322 (2002).

    Article  ADS  Google Scholar 

  9. L. V. Lutsev, A. I. Stognii, and N. N. Novitskii, Pis’ma Zh. Eksp. Teor. Fiz. 81, 636 (2005) [JETP Lett. 81, 514 (2005)].

    Google Scholar 

  10. L. V. Lutsev, A. I. Stognij, N. N. Novitskii, and A. A. Stashkevich, J. Magn. Magn. Mater. 300, e12 (2006).

    Article  ADS  Google Scholar 

  11. L. V. Lutsev, A. I. Stognij, and N. N. Novitskii, Phys. Rev. B 80, 184423 (2009).

    Article  ADS  Google Scholar 

  12. M. Yokoyama, T. Ogawa, A. M. Nazmul, and M. Tanaka, J. Appl. Phys. 99, 08D502 (2006).

    Article  Google Scholar 

  13. B. S. Kerner and V. F. Sinkevich, Pis’ma Zh. Eksp. Teor. Fiz. 36, 359 (1982) [JETP Lett. 36, 436 (1982)].

    Google Scholar 

  14. H. Kostial, K. Ploog, R. Hey, and F. G. Boebel, J. Appl. Phys. 78, 4560 (1995).

    Article  ADS  Google Scholar 

  15. K. Aoki, Phys. Status Solidi B 204, 481 (1997).

    Article  MathSciNet  ADS  Google Scholar 

  16. L. V. Lutsev, J. Phys.: Condens. Matter 18, 5881 (2006).

    Article  ADS  Google Scholar 

  17. Handbook of Thin Film Technology, Ed. by L. Meisel and R. Glang (McGraw-Hill, New York, 1970; Sov. Radio, Moscow, 1977).

    Google Scholar 

  18. A. I. Stognii, N. N. Novitskii, and O. M. Stukalov, Pis’ma Zh. Tekh. Fiz. 29, 39 (2003) [Tech. Phys. Lett. 29, 43 (2003)].

    Google Scholar 

  19. http://www.esrf.eu/UsersAndScience/Experiments/SoftMatter/ID10B.

  20. L. G. Parratt, Phys. Rev. 95, 359 (1954).

    Article  ADS  Google Scholar 

  21. S. K. Sinha, E. B. Sirota, S. Garoff, and H. B. Stanley, Phys. Rev. B 38, 2297 (1988).

    Article  ADS  Google Scholar 

  22. G. Renaud, R. Lazzari, and F. Leroy, Surf. Sci. Rep. 64, 255 (2009).

    Article  ADS  Google Scholar 

  23. G. Renaud, R. Lazzari, C. Revenant, et al., Science 300, 1416 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Grigor’eva.

Additional information

Original Russian Text © N.A. Grigor’eva, A.A. Vorob’ev, V.A. Ukleev, E.A. Dyad’kina, L.V. Lutsev, A.I. Stognij, N.N. Novitskii, S.V. Grigor’ev, 2010, published in Pis’ma v Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2010, Vol. 92, No. 11, pp. 847–853.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grigor’eva, N.A., Vorob’ev, A.A., Ukleev, V.A. et al. Investigation of the SiO2(Co)/GaAs heterostructures using the surface scattering of synchrotron radiation. Jetp Lett. 92, 767–773 (2010). https://doi.org/10.1134/S0021364010230104

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364010230104

Keywords

Navigation