Skip to main content
Log in

Effect of the Coulomb scattering on graphene conductivity

  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The effect of the Coulomb scattering on graphene conductivity in field-effect transistor structures is discussed. Interparticle scattering (electron-electron, hole-hole, and electron-hole) and scattering on charged defects are taken into account in a wide range of gate voltages. It is shown that an intrinsic conductivity of graphene (purely ambipolar system, where both electron and hole densities exactly coincide) is defined by a strong electron-hole scattering. It has a universal value independent of the temperature. We give an explicit derivation based on the scaling theory. When there is even a small discrepancy in the electron and hole densities caused by the applied gate voltage, the conductivity is determined by both a strong electron-hole scattering and a weak external scattering: on the defects or phonons. We suggest that the density of the charged defects (occupancy of defects) depends on the Fermi energy to explain the sublinear dependence of conductivity on a fairly high gate voltage observed in the experiments. We also eliminate the contradictions between the experimental data obtained in the deposited and suspended graphene structures regarding the graphene conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Berger, Z. Song, T. Li, et al., J. Phys. Chem. 108, 19912 (2004).

    Google Scholar 

  2. K. S. Novoselov, A. K. Geim, S. V. Morozov, et al., Nature 438, 197 (2005).

    Article  ADS  Google Scholar 

  3. A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).

    Article  ADS  Google Scholar 

  4. B. Obradovic, R. Kotlyar, F. Heinz, et al., Appl. Phys. Lett. 88, 142102 (2006).

  5. J. Hass, R. Feng, T. Li, X. Li, et al., Appl. Phys. Lett. 89, 143106 (2006).

  6. B. Huard, J. A. Sulpizio, N. Stander, et al., Phys. Rev. Lett. 98, 236803 (2007).

    Google Scholar 

  7. V. Ryzhii, M. Ryzhii, and T. Otsuji, Appl. Phys. Express 1, 013001 (2008).

    Google Scholar 

  8. Z. Chen, Y.-M. Lin, M. J. Rooks, and P. Avouris, Physica E 40, 228 (2007).

    Article  ADS  Google Scholar 

  9. K. Ziegler, Phys. Rev. B 75, 233407 (2007).

    Google Scholar 

  10. V. Vyurkov and V. Ryzhii, cond-mat/0803.3926 (2008).

  11. A. V. Shytov, M. I. Katsnelson, and L. S. Levitov, condmat/0705.4663v2 (2007).

  12. M. M. Fogler, D. S. Novikov, and B. I. Shklovskii, condmat/0707.1023v3 (2007).

  13. R. R. Biswas and S. Suchdev, cond-mat/0706.3907v2 (2007).

  14. E. H. Hwang, S. Adam, and S. Das Sarma, Phys. Rev. Lett. 98, 186806 (2007).

  15. A. Kashuba, cond-mat/0802.2216 (2008).

  16. F. T. Vasko and V. Ryzhii, Phys. Rev. B 76, 233404 (2007).

    Google Scholar 

  17. S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, et al., Phys. Rev. Lett. 100, 016602 (2008).

    Google Scholar 

  18. X. Du, I. Skachko, A. Barker, and E. Y. Andrei, condmat/0802.2933 (2008).

  19. D. M. Basco and I. L. Aleiner, Phys. Rev. B 77, 041409(R) (2008).

Download references

Author information

Authors and Affiliations

Authors

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vyurkov, V., Ryzhii, V. Effect of the Coulomb scattering on graphene conductivity. Jetp Lett. 88, 322–325 (2008). https://doi.org/10.1134/S0021364008170074

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364008170074

PACS numbers

Navigation