Skip to main content
Log in

Accounting for the Edge Effects of Electric and Magnetic Fields in the Spectroscopy of Ion Flows from Relativistic Laser Plasma

Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

Analytical formulas are obtained that describe stationary fields in magnetic and electric separators of charged particles of ion spectrometers of two types taking edge effects into account: a time-of-flight spectrometer with magnetic separation and a Thomson mass spectrometer. Based on a numerical solution of the equation of ion motion in magnetic and electric fields taking the edge effects into account, it is shown that calculation using the effective constant-field method without taking the edge effects into account leads to errors not only in determining the ion energy, but also in the estimation of the mass and charge compositions of the ion flow, which is formed under irradiation of solid targets with femtosecond laser pulses of relativistic intensity. On the basis of the developed approaches, experimental data that were obtained using spectrometers of both types at a laser radiation intensity of above 1018 W/cm2 on targets are interpreted and it is shown that the developed algorithms provide their fast and efficient analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

REFERENCES

  1. Mourou, G.A., Tajima, T., and Bulanov, S.V., Rev. Mod. Phys., 2006, vol. 78, no. 2, p. 309. https://doi.org/10.1103/RevModPhys.78.309

    Article  ADS  Google Scholar 

  2. Daido, H., Nishiuchi, M., and Pirozhkov, A.S., Rep. Prog. Phys., 2012, vol. 75, no. 5, p. 056401. https://doi.org/10.1088/0034-4885/75/5/056401

    Article  ADS  Google Scholar 

  3. Macchi, A., A Review of Laser-Plasma Ion Acceleration, 2017, pp. 1–24. http://arxiv.org/abs/1712.06443.

    Google Scholar 

  4. Ledingham, K.W.D., Galster, W., and Sauerbrey, R., Br. J. Radiol., 2007, vol. 80, no. 959, p. 855. https://doi.org/10.1259/bjr/29504942

    Article  Google Scholar 

  5. Ledingham, K.W.D., McKenna, P., and Singhal, R.P., Science, 2003, vol. 300, no. 5622, p. 1107. https://doi.org/10.1126/science.1080552

    Article  ADS  Google Scholar 

  6. Volkov, R.V., Golishnikov, D.M., Gordienko, V.M., Mikheev, P.M., Savel’ev, A.B., Sevast’yanov, V.D., Chernysh, V.S., and Chutko, O.V., JETP Lett., 2000, vol. 72, no. 8, p. 401. https://doi.org/10.1134/1.1335116

    Article  ADS  Google Scholar 

  7. Ledingham, K.W.D., Spencer, I., McCanny, T., Singhal, R.P., Santala, M.I.K., Clark, E., Watts, I., Beg, F.N., Zepf, M., Krushelnick, K., Tatarakis, M., Dangor, A.E., Norreys, P.A., Allott, R., Neely, D., et al., Phys. Rev. Lett., 2000, vol. 84, no. 5, p. 899. https://doi.org/10.1103/PhysRevLett.84.899

    Article  ADS  Google Scholar 

  8. Hah, J., Nees, J.A., Hammig, M.D., Krushelnick, K., and Thomas, A.G.R., Plasma Phys. Controlled Fusion, 2018, vol. 60, no. 5, p. 054011. https://doi.org/10.1088/1361-6587/aab327

    Article  ADS  Google Scholar 

  9. Tsymbalov, I.N., Volkov, R.V., Eremin, N.V., Ivanov, K.A., Nedorezov, V.G., Paskhalov, A.A., Polonskij, A.L., Savel’ev, A.B., Sobolevskij, N.M., Turinge, A.A., and Shulyapov, S.A., Phys. At. Nucl., 2017, vol. 80, no. 3, p. 397. https://doi.org/10.1134/1.1335116

    Article  Google Scholar 

  10. Pikuz, S.A., Jr., Skobelev, I.Yu., Faenov, A.Ya., Lavrinenko, Ya.S., Belyaev, V.S., Kliushnikov, V.Yi., Matafonov, A.P., Rusetskiy, A.S., Ryazantsev, S.N., and Bakhmutova, A.V., High Temp., 2016, vol. 54, no. 3, p. 428. https://doi.org/10.1134/S0018151X16030160

    Article  Google Scholar 

  11. Volkov, R.V., Golishnikov, D.M., Gordienko, V.M., Dzhidzhoev, M.S., Lachko, I.M., Mar’in, B.V., Mikheev, P.M., Savel’ev, A.B., Uryupina, D.S., and Shashkov, A.A., Quantum Electron., 2003, vol. 33, no. 11, p. 981. https://doi.org/10.1070/qe2003v033n11abeh002534

    Article  ADS  Google Scholar 

  12. Shulyapov, S.A., Mordvintsev, I.M., Ivanov, K.A., Volkov, R.V., Zarubin, P.I., Ambrožová, I., Turek, K., and Savel’ev, A.B., Quantum Electron., 2016, vol. 46, no. 5, p. 432. https://doi.org/10.1070/QEL16032

    Article  ADS  Google Scholar 

  13. Harres, K., Schollmeier, M., Brambrink, E., Audebert, P., Blažević, A., Flippo, K., Gautier, D.C., Geißel, M., Hegelich, B.M., Nürnberg, F., Schreiber, J., Wahl, H., and Roth, M., Rev. Sci. Instrum., 2008, vol. 79, no. 9, p. 093306. https://doi.org/10.1063/1.2987687

    Article  ADS  Google Scholar 

  14. Freeman, C.G., Fiksel, G., Stoeckl, C., Sinenian, N., Canfield, M.J., Graeper, G.B., Lombardo, A.T., Stillman, C.R., Padalino, S.J., Mileham, C., Sangster, T.C., and Frenje, J.A., Rev. Sci. Instrum., 2011, vol. 82, no. 7, p. 073301. https://doi.org/10.1063/1.3606446

    Article  ADS  Google Scholar 

  15. Carroll, D.C., Brummitt, P., Neely, D., Lindau, F., Lundh, O., Wahlström, C.-G., and McKenna, P., Nucl. Instrum. Methods Phys. Res.,Sect. A, 2010, vol. 620, no. 1, p. 23. https://doi.org/10.1016/j.nima.2010.01.054

    Article  Google Scholar 

  16. Rhee, M.J., Rev. Sci. Instrum., 1984, vol. 55, no. 8, p. 1229. https://doi.org/10.1063/1.1137927

    Article  ADS  Google Scholar 

  17. Cutroneo, M., Torrisi, L., Cavallaro, S., Ando’, L., and Velyhan, A., J. Phys.: Conf. Ser., 2014, vol. 508, no. 1. https://doi.org/10.1088/1742-6596/508/1/012020

  18. Morrison, J.T., Willis, C., Freeman, R.R., and Van Woerkom, L., Rev. Sci. Instrum., 2011, vol. 82, no. 3, p. 033506. https://doi.org/10.1063/1.3556444

    Article  ADS  Google Scholar 

  19. Rieker, G.B., Poehlmann, F.R., and Cappelli, M.A., Phys. Plasmas, 2013, vol. 20, no. 7, p. 073115. https://doi.org/10.1063/1.4816028

    Article  ADS  Google Scholar 

  20. Engel-Herbert, R. and Hesjedal, T., J. Appl. Phys., 2005, vol. 97, no. 7, p. 074504. https://doi.org/10.1063/1.1883308

    Article  ADS  Google Scholar 

  21. Palmer, H.B., Trans. Am. Inst. Electr. Eng., 1937, vol. 56, no. 3, p. 363. https://doi.org/10.1109/T-AIEE.1937.5057547

    Article  Google Scholar 

  22. Rogowski, W., Arch. Elektrotech., 1923, vol. 12, p. 1.

    Article  Google Scholar 

  23. Valluri, S.R., Jeffrey, D.J., and Corless, R.M., Can. J. Phys., 2011, vol. 78, no. 9, p. 823. https://doi.org/10.1139/p00-065

    Article  ADS  Google Scholar 

  24. Schneider, R.F., Luo, C.M., and Rhee, M.J., J. Appl. Phys., 1985, vol. 57, no. 1, p. 1. https://doi.org/10.1063/1.335389

    Article  ADS  Google Scholar 

  25. Cobble, J.A., Flippo, K.A., Offermann, D.T., Lopez, F.E., Oertel, J.A., Mastrosimone, D., Letzring, S.A., and Sinenian, N., Rev. Sci. Instrum., 2011, vol. 82, no. 11, p. 113504. https://doi.org/10.1063/1.3658048

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to Valerii Muratovich Doev, a collaborator of OOO Baspik Vladikavkaz Technological Center, for his help in developing the ion detector for the Thomson mass spectrometer.

Funding

This study was supported by the Russian Foundation for Basic Research, projects nos. 18-32-00416 and 19-02-00104.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Mordvintsev.

Additional information

Translated by A. Seferov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mordvintsev, I.M., Shulyapov, S.A. & Savel’ev, A.B. Accounting for the Edge Effects of Electric and Magnetic Fields in the Spectroscopy of Ion Flows from Relativistic Laser Plasma. Instrum Exp Tech 62, 737–745 (2019). https://doi.org/10.1134/S0020441219050208

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441219050208

Navigation