Skip to main content
Log in

Hydriding of Magnesium in the Presence of the Mg2Ni Intermetallic Compound

  • Published:
Inorganic Materials Aims and scope

Abstract—

To optimize hydriding conditions for magnesium, a promising material for hydrogen storage systems, we have studied reaction of high-purity hydrogen at a pressure from 30 to 35 atm with a mechanical mixture of magnesium powder and the Mg2Ni intermetallic compound (10–50 wt %), both 200 μm in particle size, at temperatures from 300 to 390°C, without high-energy preactivation of the mixture. The results demonstrate that, on the addition of 20 wt % Mg2Ni, the degree of magnesium hydriding at a temperature of 370–380°C is 95–96%. Experimental evidence is presented that, at temperatures from 220 to 450°C, such a mixture used as a working material in rechargeable high-temperature metal hydride hydrogen accumulators releases more than 6.5 wt % high-purity hydrogen suitable for use in small-scale and laboratory works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. Hirscher, M., Yartys, V.A., Baricco, M., et al., Materials for hydrogen-based energy storage – past, recent progress and future outlook, J. Alloys Compd., 2020, vol. 827, article 153548. https://doi.org/10.1016/j.jallcom.2019.153548

    Article  CAS  Google Scholar 

  2. Baran, A. and Polański, M., Magnesium-based materials for hydrogen storage – a scope review, Materials, 2020, vol. 13, no. 18, article 3993. https://doi.org/10.3390/ma13183993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hitam, C.N.C., Aziz, M.A.A., Ruhaimi, A.H., and Taib, M.R., Magnesium-based alloys for solid-state hydrogen storage applications: a review, Int. J. Hydrogen Energy, 2021, vol. 46, pp. 31067–31083. https://doi.org/10.1016/j.ijhydene.2021.03.153

    Article  CAS  Google Scholar 

  4. Yartys, V.A., Lototskyy, M.V., Akiba, E., et al., Magnesium based materials for hydrogen based energy storage: past, present and future, Int. J. Hydrogen Energy, 2019, vol. 44, no. 15, pp. 7809–7859. https://doi.org/10.1016/j.ijhydene.2018.12.212

    Article  CAS  Google Scholar 

  5. Ouyang, L., Chen, K., Jiang, J., et al., Hydrogen storage in light-metal based systems: a review, J. Alloys Compd., 2020, vol. 829, article 154597. https://doi.org/10.1016/j.jallcom.2020.154597

    Article  CAS  Google Scholar 

  6. Ouyang, L., Liu, F., Wang, H., et al., Magnesium-based hydrogen storage compounds: a review, J. Alloys Compd., 2020, vol. 832, article 154865. https://doi.org/10.1016/j.jallcom.2020.154865

    Article  CAS  Google Scholar 

  7. Sun, Y., Shen, C., Lai, Q., et al., Tailoring magnesium based materials for hydrogen storage through synthesis: current state of the art, Energy Storage Mater., 2018, vol. 10, pp. 168–198. https://doi.org/10.1016/j.ensm.2017.01.010

    Article  Google Scholar 

  8. Tarasov, B.P., Mozhzhukhin, S.A., Arbuzov, A.A., et al., Features of the hydrogenation of magnesium with a Ni–graphene coating, Russ. J. Phys. Chem. A, 2020, vol. 94, no. 5, pp. 996–1001. https://doi.org/10.1134/S0036024420050222

    Article  CAS  Google Scholar 

  9. Tarasov, B.P., Arbuzov, A.A., Mozhzhuhin, S.A., et al., Hydrogen storage behavior of magnesium catalyzed by nickel–graphene nanocomposites, Int. J. Hydrogen Energy, 2019, vol. 44, no. 55, pp. 29212–29223. https://doi.org/10.1016/j.ijhydene.2019.02.033

    Article  CAS  Google Scholar 

  10. Nadol’skii, D.S., Zinnatullina, L.R., and Medvedeva, N.A., Hydrogen storage materials, Vestn. Permsk. Univ., Ser. Khim., 2019, vol. 9, no. 2, pp. 106–125. https://doi.org/10.17072/2223-1838-2019-2-106-125

    Article  Google Scholar 

  11. Fu, Y., Groll, M., Mertz, R., and Kulenovic, R., Effect of LaNi5 and additional catalysts on hydrogen storage properties of Mg, J. Alloys Compd., 2008, vol. 460, pp. 607–613. https://doi.org/10.1016/j.jallcom.2007.06.008

    Article  CAS  Google Scholar 

  12. Zhou, C., Fang, Z.Z., Ren, C., et al., Effect of Ti intermetallic catalysts on hydrogen storage properties of magnesium hydride, J. Phys. Chem. C, 2013, vol. 117, pp. 12973–12980. https://doi.org/10.1021/jp402770p

    Article  CAS  Google Scholar 

  13. Antiqueira, F.J., Leiva, D.R., Zepon, G., and Botta, W.J., Room temperature conversion of Mg to MgH2 assisted by low fractions of additives, Int. J. Hydrogen Energy, 2022, vol. 47, no. 1, pp. 470–489. https://doi.org/10.1016/j.ijhydene.2021.10.047

    Article  CAS  Google Scholar 

  14. El-Eskandarany, M.S., Shaban, E., Al-Matrouk, H., et al., Structure, morphology and hydrogen storage kinetics of nanocomposite MgH2/10 wt % ZrNi5 powders, Mater. Today Energy, 2017, vol. 3, pp. 60–71. https://doi.org/10.1016/j.mtener.2016.12.002

    Article  Google Scholar 

  15. El-Eskandarany, M.S., Al-Ajmi, F., Banyan, M., and Al-Duweesh, A., Synergetic effect of reactive ball milling and cold pressing on enhancing the hydrogen storage behavior of nanocomposite MgH2/10 wt % TiMn2 binary system, Int. J. Hydrogen Energy, 2019, vol. 44, pp. 26428–26443. https://doi.org/10.1016/j.ijhydene.2019.08.093

    Article  CAS  Google Scholar 

  16. Pang, Y., Yuan, T., Yang, J., et al., In situ formation of Al3Ti, MgF2 and Al and their superior synergetic effects on reversible hydrogen storage of MgH2, Catal. Today, 2018, vol. 318, pp. 107–112. https://doi.org/10.1016/j.cattod.2017.10.035

    Article  CAS  Google Scholar 

  17. Fokin, V.N., Fokina, E.E., Mozhzhukhin, S.A., and Tarasov, B.P., Hydriding of eutectic Mg–Ni alloy in hydrogen and ammonia, Inter. Scient. J. for Alternative Energy and Ecology, 2016, nos. 9–10, pp. 58–65. https://doi.org/10.15518/isjaee.2016.09-10.058-065

  18. Chen, Y., Dai, J., and Song, Y., Stability and hydrogen adsorption properties of Mg/Mg2Ni interface: a first principles study, Int. J. Hydrogen Energy, 2018, vol. 43, no. 34, pp. 16598–16608. https://doi.org/10.1016/j.ijhydene.2018.07.031

    Article  CAS  Google Scholar 

  19. Buzanov, G.A., Simonenko, N.P., Mal’tseva, N.N., et al., Preparation and characterization of MgH2 mechanocomposites with Mg2NiH0.3 + Mg2NiH4–δ two-phase mixture, Russ. J. Inorg. Chem., 2018, vol. 63, no. 12, pp. 1517–1521. https://doi.org/10.1134/S0036023618120057

    Article  Google Scholar 

  20. Fadonougbo, J.O., Kim, H.-J., Suh, B.-C., et al., Kinetics and thermodynamics of near eutectic Mg–Mg2Ni composites produced by casting process, Int. J. Hydrogen Energy, 2020, vol. 45, no. 53, pp. 29009–29022. https://doi.org/10.1016/j.ijhydene.2020.07.181

    Article  CAS  Google Scholar 

  21. Klyamkin, S.N., Magnesium-based metal hydride compositions as hydrogen storage materials, Ross. Khim. Zh., 2006, vol. 50, no. 6, pp. 49–55.

    CAS  Google Scholar 

  22. Diagrammy sostoyaniya dvoinykh metallicheskikh sistem: Spravochnik (Phase Diagrams of Binary Metallic Systems: A Handbook), Lyakishev, N.P., Ed., Moscow: Mashinostroenie, 1996, vol. 3, book 1.

  23. Song, M.Y. and Park, H.R., Pressure–composition isotherms in the Mg2Ni–H2 system, J. Alloys Compd., 1998, vol. 270, pp. 164–167.

    Article  CAS  Google Scholar 

  24. Blomqvist, H. and Noréus, D., Mechanically reversible conductor–insulator transition in Mg2NiH4, J. Appl. Phys., 2002, vol. 91, no. 8, pp. 5141–5148. https://doi.org/10.1063/1.1461069

    Article  CAS  Google Scholar 

  25. Hayashi, Sh., Hayamizu, K., and Yamamoto, O., The relation between the hydrogen motion and the phase transition in the β phase of the Mg2NiHx system, J. Chem. Phys., 1983, vol. 79, no. 11, pp. 5572–5578. https://doi.org/10.1063/1.445677

    Article  CAS  Google Scholar 

  26. Zaluska, A., Zaluki, L., and Strőm-Olsen, J.O., Structure, catalysis and atomic reactions on the nano-scale: a systematic approach to metal hydrides for hydrogen storage, Appl. Phys. A, 2001, vol. 72, pp. 157–165. https://doi.org/10.1007/s003390100783

    Article  CAS  Google Scholar 

  27. Montone, A., Grbovic Novakovic, J., Vittori Antisari, M., et al., Nano–micro MgH2–Mg2NiH4 composites: tailoring a multichannel system with selected hydrogen sorption properties, Int. J. Hydrogen Energy, 2007, vol. 32, pp. 2926–2934. https://doi.org/10.1016/j.ijhydene.2006.12.021

    Article  CAS  Google Scholar 

  28. Tarasov, B.P., Metal-hydride accumulators and generators of hydrogen for feeding fuel cells, Int. J. Hydrogen Energy, 2011, vol. 36, no. 1, pp. 1196–1199. https://doi.org/10.1016/j.ijhydene.2010.07.002

    Article  CAS  Google Scholar 

  29. Fokin, V.N., Fokina, E.E., and Tarasov, B.P., Hydriding of Mg2Ni in ammonia, Inorg. Mater., 2009, vol. 45, no. 8, pp. 859–862. https://doi.org/10.1134/S0020168509080068

  30. Zhang, J., Yao, L., Zhu, Y., et al., An exciting synergistic effect: realizing large-sized MgH2 dehydrogenation at lowered temperatures by locally assembling a heterophase composite, Mater. Today Energy, 2019, vol. 14, article 100345. https://doi.org/10.1016/j.mtener.2019.100345

    Article  Google Scholar 

  31. Fokin, V.N., Fokina, E.E., and Tarasov, B.P., Study of the interaction of titanium and its alloys with iron with hydrogen and ammonia, Russ. J. Appl. Chem., 2019, vol. 92, no. 1, pp. 35–44. https://doi.org/10.1134/S1070427219010051

    Article  CAS  Google Scholar 

  32. Fursikov, P.V., Sleptsova, A.M., Mozhzhukhin, S.A., et al., Phase composition and microstructure of Mg–Ni eutectic alloy with graphene-like material for hydrogen sorption, Russ. J. Phys. Chem. A, 2020, vol. 94, no. 5, pp. 1011–1016. https://doi.org/10.1134/S0036024420050076

    Article  CAS  Google Scholar 

  33. Genossar, J. and Rudman, P.S., Structural transformation in Mg2NiH4, J. Phys. Chem. Solids, 1981, vol. 42, no. 7, pp. 611–616. https://doi.org/10.1016/0022-3697(81)90111-6

    Article  CAS  Google Scholar 

  34. Noréus, D. and Werner, P.-E., Structural studies of hexagonal Mg2NiHx , Acta Chem. Scand. A, 1982, vol. 36, pp. 847–851.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

In this work, we used equipment at the Shared Analytical Facilities Center, Institute of Problems of Chemical Physics, Russian Academy of Sciences.

Funding

This work was supported by the Russian Federation Ministry of Science and Higher Education, state research target, state registration no. AAAA-A19-119061890019-5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Fokin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fokin, V.N., Fursikov, P.V., Fokina, E.E. et al. Hydriding of Magnesium in the Presence of the Mg2Ni Intermetallic Compound. Inorg Mater 58, 1123–1129 (2022). https://doi.org/10.1134/S0020168522110036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168522110036

Keywords:

Navigation