Skip to main content
Log in

A Nonempirical Study of Oxygen Adsorption on the (011) In2O3 Surface

  • Published:
Inorganic Materials Aims and scope

Abstract—

Using density-functional calculations, we demonstrate that adsorption of an oxygen molecule on the (011) indium oxide surface with a neutral oxygen vacancy is an activationless process. The stretching frequency of an adsorbed oxygen molecule is calculated for different stable geometries on the indium oxide surface. We simulate scanning tunneling microscopy images of the (011) indium oxide surface: for a stoichiometric surface and a surface with an oxygen vacancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Untila, G.G., Kost, T.N., and Chebotareva, A.B., ITO/SiO/n-Si heterojunction solar cell with bifacial 16.6%/14.6% front/rear efficiency produced by ultrasonic spray pyrolysis: effect of conditions of SiO growth by wet-chemical oxidation, Solar Energy, 2020, vol. 204, pp. 395–405.https://doi.org/10.1016/j.solener.2020.04.076

    Article  CAS  Google Scholar 

  2. Zhang, D., Liu, Z., Li, C., Tang, T., Liu, X., Han, S., Lei, B., and Zhou, C., Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices, Nano Lett., 2004, vol. 4, no. 10, pp. 1919–1924.https://doi.org/10.1021/nl0489283

    Article  CAS  Google Scholar 

  3. Gerasimov, G.N., Gromov, V.F., Ilegbusi, O.J., and Trakhtenberg, L.I., The mechanisms of sensory phenomena in binary metal-oxide nanocomposites, Sens. Actuators, B, 2017, vol. 240, pp. 613–624.https://doi.org/10.1016/j.snb.2016.09.007

    Article  CAS  Google Scholar 

  4. Lee, S., Song, Y., Park, H., Zaslavsky, A., and Paine, D.C., Channel scaling and field-effect mobility extraction in amorphous InZnO thin film transistors, Solid-State Electron., 2017, vol. 135, pp. 94–99.https://doi.org/10.1016/j.sse.2017.06.033

    Article  CAS  Google Scholar 

  5. Dhananjay, Cheng, S.S., Yang, C.Y., Ou, C.W., Chuang, Y.C., Chyi Wu, M., and Chu, C.W., Dependence of channel thickness on the performance of In2O3 thin film transistors, J. Phys. D: Appl. Phys., 2008, vol. 41, no. 9, paper 92006.https://doi.org/10.1088/0022-3727/41/9/092006

  6. Dellis, S., Isakov, I., Kalfagiannis, N., Tetzner, K., Anthopoulos, T., and Koutsogeorgis, D., Rapid laser-induced photochemical conversion of sol–gel precursors to In2O3 layers and their application in thin-film transistors, J. Mater. Chem. C, 2017, vol. 5, no. 15, p. 3673.https://doi.org/10.1039/c7tc00169j

    Article  CAS  Google Scholar 

  7. Hao, Y., Meng, G., Ye, C., and Zhang, L., Controlled synthesis of In2O3 octahedrons and nanowires, Cryst. Growth Des., 2005, vol. 5, no. 4, pp. 1617–1621.https://doi.org/10.1021/cg050103z

    Article  CAS  Google Scholar 

  8. Shi, M., Xu, F., Yu, K., Zhu, Z., and Fang, J., Controllable synthesis of In2O3 nanocubes, truncated nanocubes, and symmetric multipods, J. Phys. Chem. C, 2007, vol. 111, no. 44, pp. 16267–16271.https://doi.org/10.1021/jp074445m

    Article  CAS  Google Scholar 

  9. Gurlo, A., Nanosensors: towards morphological control of gas sensing activity. SnO2, In2O3, ZnO and WO3 case studies, Nanoscale, 2011, vol. 3, no. 1, pp. 154–165.https://doi.org/10.1039/c0nr00560f

    Article  CAS  PubMed  Google Scholar 

  10. Agoston, P. and Albe, K., Thermodynamic stability, stoichiometry, and electronic structure of bcc-In2O3 surfaces, Phys. Rev. B: Condens. Matter Mater. Phys., 2011, vol. 84, paper 045311.https://doi.org/10.1103/PhysRevB.84.045311

  11. Barsan, N. and Weimar, U., Conduction model of metal oxide gas sensors, J. Electroceram., 2001, vol. 7, pp. 143–167.https://doi.org/10.1023/a:1014405811371

    Article  CAS  Google Scholar 

  12. Lany, S., Zakutayev, A., Mason, T.O., Wager, J.F., Poeppelmeier, K.R., Perkins, J.D., Berry, J.J., Ginley, D.S., and Zunger, A., Surface origin of high conductivities in undoped In2O3 thin films, Phys. Rev. Lett., 2012, vol. 108, no. 1, paper 016802.https://doi.org/10.1103/PhysRevLett.108.016802

  13. Kurmangaleev, K.S., Mikhailova, T.Yu., and Trakhtenberg, L.I., Oxygen chemisorption on the surface of an In2O3 (011) nanocrystal, Inorg. Mater., 2020, vol. 56, no. 11, pp. 1138–1146.https://doi.org/10.1134/S0020168520110060

    Article  CAS  Google Scholar 

  14. Bodneva, V.L., Ilegbusi, O.J., Kozhushner, M.A., Kurmangaleev, K.S., Posvyanskii, V.S., and Trakhtenberg, L.I., Modeling of sensor properties for reducing gases and charge distribution in nanostructured oxides: a comparison of theory with experimental data, Sens. Actuators, B, 2019, vol. 287, pp. 218–224.https://doi.org/10.1016/j.snb.2019.02.034

    Article  CAS  Google Scholar 

  15. Perdew, P., Burke, K., and Ernzerhof, M., Generalized gradient approximation made simple, Phys. Rev. Lett., 1996, vol. 77, pp. 3865–3868.https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  PubMed  Google Scholar 

  16. Monkhorst, H.J. and Pack, J.D., Special points for Brillouin zone integrations, Phys. Rev. B: Solid State, 1976, vol. 13, pp. 5188–5192.https://doi.org/10.1103/PhysRevB.13.5188

    Article  Google Scholar 

  17. Baroni, S., de Gironcoli, S., Dal Corso, A., and Giannozzi, P., Phonons and related crystal properties from density functional perturbation theory, Rev. Mod. Phys., 2001, vol. 73, pp. 515–562.https://doi.org/10.1103/RevModPhys.73.515

    Article  CAS  Google Scholar 

  18. Momma, K. and Izumi, F., VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Crystallogr., 2011, vol. 44, pp. 1272–1276.https://doi.org/10.1107/S0021889811038970

    Article  CAS  Google Scholar 

  19. Lun Pang, C., Lindsay, R., and Thornton, G., Chemical reactions on rutile TiO2(110), Chem. Soc. Rev., 2008, vol. 37, no. 10, pp. 2328–2353.https://doi.org/10.1039/b719085a

    Article  CAS  Google Scholar 

  20. Dulub, O., Valentin, C.D., Selloni, A., and Diebold, U., Structure, defects, and impurities at the rutile TiO2(011)-(2 × 1) surface: a scanning tunneling microscopy study, Surf. Sci., 2006, vol. 600, no. 19, pp. 4407–4417.https://doi.org/10.1016/j.susc.2006.06.042

    Article  CAS  Google Scholar 

  21. Morales, E.H., He, Y., Vinnichenko, M., Delley, B., and Diebold, U., Surface structure of Sn-doped In2O3 (111) thin films by STM, New J. Phys., 2008, vol. 10, paper 125030.https://doi.org/10.1088/1367-2630/10/12/125030

  22. Tersoff, J. and Hamann, D.R., Theory of the scanning tunneling microscope, Phys. Rev. B: Condens. Matter Mater. Phys., 1985, vol. 31, no. 2, pp. 805–813.https://doi.org/10.1103/physrevb.31.805

    Article  CAS  Google Scholar 

  23. Ulusoy, I.S., Scribano, Y., Benoit, D.M., Tschetschetkin, A., Maurer, N., Koslowski, B., and Ziemann, P., Vibrations of a single adsorbed organic molecule: anharmonicity matters, Phys. Chem. Chem. Phys., 2011, vol. 13, pp. 612–618.https://doi.org/10.1039/c0cp01289k

    Article  CAS  PubMed  Google Scholar 

  24. Keceli, M., Hirata, S., and Yagi, K., First-principles calculations on anharmonic vibrational frequencies of polyethylene and polyacetylene in the gamma approximation, J. Chem. Phys., 2010, vol. 133, no. 3, paper 034110.https://doi.org/10.1063/1.3462238

  25. Nakamoto, K., Infrared and Raman Spectra of Inorganic and Coordination Compounds, New York: Wiley, 1978.https://doi.org/10.1002/0470027320.s4104

  26. Davydov, A.A., Molecular Spectroscopy of Oxide Catalyst Surfaces, Chichester: Wiley, 2003.https://doi.org/10.1016/s1351-4180(03)01049-3

  27. Siedl, N., Gügel, P., and Diwald, O., First combined electron paramagnetic resonance and FT-IR spectroscopic evidence for reversible O2 adsorption on In2O3 – x nanoparticles, J. Phys. Chem. C, 2013, vol. 117, no. 40, pp. 20722–20729.https://doi.org/10.1021/jp4069834

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to our colleagues at the Joint Supercomputer Center, Russian Academy of Sciences, for providing us with necessary computational resources.

Funding

This work was supported by the Russian Federation Ministry of Science and Higher Education (state research target for the Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences: New Generation of Nanostructured Systems with Unique Functional Properties) and the Russian Foundation for Basic Research (grant nos. 19-37-90016 and 20-07-00158).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Kurmangaleev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurmangaleev, K.S., Mikhailova, T.Y. & Trakhtenberg, L.I. A Nonempirical Study of Oxygen Adsorption on the (011) In2O3 Surface. Inorg Mater 58, 278–283 (2022). https://doi.org/10.1134/S0020168522030086

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168522030086

Keywords:

Navigation