Skip to main content
Log in

LiFePO4/Carbon Nanomaterial Composites for Cathodes of High-Power Lithium Ion Batteries

  • Published:
Inorganic Materials Aims and scope

Abstract—

Using a simple and technological approach, we have fabricated composites based on a lithium iron phosphate (LFP) with the olivine structure and a carbon coating containing 5–10% carbon nanotubes (CNTs) or nanoflakes. Materials prepared with the use of mechanochemical activation have a slightly smaller particle size. At the same time, their electrical conductivity is higher by several orders of magnitude, reaching 8.7 × 10–2 S/cm for the best samples. Moreover, the synthesized materials demonstrate a considerable increase in their reversible capacity, especially at high battery charge/discharge rates. The composites containing carbon nanotubes show the best performance. In particular, the discharge capacity of the LFP/C/10CNT-500 composite is 120, 97, 78, and 57 mAh/g at current densities of 200, 800, 1600, and 3200 mA/g, respectively, whereas the discharge capacity of the pristine LFP/C is 70, 63, 43, and 30 mAh/g. This effect is due to a decrease in particle size and the formation of a network of high-conductive contacts between particles of the cathode material. No clear correlation has been found between the electrochemical capacity of the composites and their specific surface area or electrical conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Widén, J., Carpman, N., Castellucci, V., Lingfors, D., Olauson, J., Remouit, F., Bergkvist, M., Grabbe, M., and Waters, R., Variability assessment and forecasting of renewables: a review for solar, wind, wave and tidal resources, Renew. Sustain. Energy Rev., 2015, vol. 44, pp. 356–375.

    Article  Google Scholar 

  2. Pearre, N., Adye, K., and Swan, L., Proportioning wind, solar, and in-stream tidal electricity generating capacity to co-optimize multiple grid integration metrics, Appl. Energy, 2019, vol. 242, pp. 69–77.

    Article  Google Scholar 

  3. Yaroslavtsev, A.B., Stenina, I.A., and Golubenko, D.V., Membrane materials for energy production and storage, Pure Appl. Chem., 2020, vol. 92, no. 7, pp. 1147–1157.

    Article  CAS  Google Scholar 

  4. Stenina, I.A. and Yaroslavtsev, A.B., Nanomaterials for lithium-ion batteries and hydrogen energy, Pure Appl. Chem., 2017, vol. 89, no. 8, pp. 1185–1194.

    Article  CAS  Google Scholar 

  5. Dehghani-Sanij, A.R., Tharumalingam, E., Dusseault, M.B., and Fraser, R., Study of energy storage systems and environmental challenges of batteries, Renew. Sustain. Energy Rev., 2019, vol. 104, pp. 192–208.

    Article  Google Scholar 

  6. Sbordone, D.A., Di Pietra, B., and Bocci, E., Energy analysis of a real grid connected lithium battery energy storage system, Energy Procedia, 2015, vol. 75, pp. 1881–1887.

    Article  CAS  Google Scholar 

  7. Lain, M.J., Brandon, J., and Kendrick, E., Design strategies for high power vs. high energy lithium ion cells, Batteries, 2019, vol. 5, no. 4, pp. 64–72.

    Article  CAS  Google Scholar 

  8. Ge, S., Leng, Y., Liu, T., Longchamps, R.S., Yang, X.-G., Gao, D., Wang, D., and Wang, C.-Y., A new approach to both high safety and high performance of lithium-ion batteries, Sci. Adv., 2020, vol. 6, no. 9, paper 7633.

  9. Ue, M. and Uosaki, K., Recent progress in liquid electrolytes for lithium metal batteries, Curr. Opin. Electrochem., 2019, vol. 17, no. 1, pp. 106–113.

    Article  CAS  Google Scholar 

  10. Bachman, J.C., Muy, S., Grimaud, A., Chang, H.-H., Pour, N., Lux, S.F., Paschos, O., Maglia, F., Lupart, S., Lamp, P., Giordano, L., and Shao-Horn, Y., Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction, Chem. Rev., 2016, vol. 116, no. 1, pp. 140–162.

    Article  CAS  PubMed  Google Scholar 

  11. Wu, X., Pan, K., Jia, M., Ren, Y., He, H., Zhang, L., and Zhang, S., Electrolyte for lithium protection: from liquid to solid, Green Energy Environ., 2019, vol. 4, no. 4, pp. 360–374.

    Article  Google Scholar 

  12. Choudhury, S., Stalin, S., Vu, D., Warren, A., Deng, Y., Biswal, P., and Archer, L.A., Solid-state polymer electrolytes for high-performance lithium metal batteries, Nat. Commun., 2019, vol. 10, paper 4398.

  13. Voropaeva, D.Yu., Novikova, S.A., and Yaroslavtsev, A.B., Polymer electrolytes for metal-ion batteries, Russ. Chem. Rev., 2020, vol. 89, no. 10, pp. 1132–1155.

    Article  CAS  Google Scholar 

  14. Roy, P. and Srivastava, S.K., Nanostructured anode materials for lithium ion batteries, J. Mater. Chem. A, 2015, vol. 3, no. 6, pp. 2454–2484.

    Article  CAS  Google Scholar 

  15. Manthiram, A., A reflection on lithium-ion battery cathode chemistry, Nat. Commun., 2020, vol. 11, pp. 1550–1553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yaroslavtsev, A.B., Kulova, T.L., and Skundin, A.M., Electrode nanomaterials for lithium-ion batteries, Russ. Chem. Rev., 2015, vol. 84, no. 8, pp. 826–852.

    Article  CAS  Google Scholar 

  17. Gong, C., Xue, Z., Wen, S., Ye, Y., and Xie, X., Advanced carbon materials/olivine LiFePO4 composites cathode for lithium ion batteries, J. Power Sources, 2016, vol. 318, pp. 93–112.

    Article  CAS  Google Scholar 

  18. Spingler, F.B., Naumann, M., and Jossen, A., Capacity recovery effect in commercial LiFePO4 || graphite cells, J. Electrochem. Soc., 2020, vol. 167, paper 040526.

  19. Whittingham, M.S., Ultimate limits to intercalation reactions for lithium batteries, Chem. Rev., 2014, vol. 114, pp. 11414–11443.

    Article  CAS  PubMed  Google Scholar 

  20. Perea, A., Sougrati, M.T., Ionica-Bousquet, C.M., Fraisse, B., Tessier, C., Aldon, L., and Jumas, J.-C., Operando 57Fe Mössbauer and XRD investigation of LixMnyFe1–yPO4/C composites (y = 0.50; 0.75), RSC Adv., 2012, vol. 2, pp. 9517–9524.

    Article  CAS  Google Scholar 

  21. Novikova, S., Yaroslavtsev, S., Rusakov, V., Kulova, T., Skundin, A. and Yaroslavtsev, A., \({\text{LiF}}{{{\text{e}}}_{{1 - x}}}{\text{M}}_{x}^{{{\text{II}}}}{\text{P}}{{{\text{O}}}_{4}}\)/C (MII = Co, Ni, Mg) as cathode materials for lithium-ion batteries, Electrochim. Acta, 2014, vol. 122, pp. 180–186.

    Article  CAS  Google Scholar 

  22. Yaroslavtsev, S.A., Vostrov, N.I., Novikova, S.A., Kulova, T.L., Yaroslavtsev, A.B., and Rusakov, V.S., Study of delithiation process features in LixFe0.8M0.2PO4 (M = Mg, Mn, Co, Ni) by Mössbauer spectroscopy, J. Phys. Chem. C, 2020, vol. 124, no. 24, pp. 13026–13035.

    Article  CAS  Google Scholar 

  23. Yang, C., Lee, D.J., Kim, H., Kim, K., Joo, J., Kim, W.B., Song, Y.B., Jung, Y.S., and Park, J., Synthesis of nano-sized urchin-shaped LiFePO4 for lithium ion batteries, RSC Adv., 2019, vol. 9, pp. 13714–13721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhao, Y., Peng, L., Liu, B., and Yu, G., Single-crystalline LiFePO4 nanosheets for high-rate Li-ion batteries, Nano Lett., 2014, vol. 14, no. 5, pp. 2849–2853.

    Article  CAS  PubMed  Google Scholar 

  25. Ahsan Z., Ding B., Cai Z., Wen C., Yang W., Ma Y., Zhang, S., Song, G., and Javed, M.S., Recent progress in capacity enhancement of LiFePO4 cathode for Li-ion batteries, J. Electrochem. Energy Conversion Storage, 2020, vol. 18, no. 1, pp. 1–54.

    CAS  Google Scholar 

  26. Bi, Z., Zhang, X., He, W., Min, D., and Zhang, W., Recent advances in LiFePO4 nanoparticles with different morphology for high-performance lithium-ion batteries, RSC Adv., 2013, vol. 3, pp. 19744–19751.

    Article  CAS  Google Scholar 

  27. Wang, X., Feng, Z., Hou, X., Liu, L., He, M., He, X., Huang, J., and Wen, Z., Fluorine doped carbon coating of LiFePO4 as a cathode material for lithium-ion batteries, Chem. Eng. J., 2020, vol. 379, paper 122371.

  28. Yaroslavtsev, A.B. and Stenina, I.A., Carbon coating of electrode materials for lithium-ion batteries, Surf. Innovations, 2021, vol. 9, nos. 2–3, pp. 92–110.

    Article  Google Scholar 

  29. Wang, G., Ma, Z., Shao, G., Kong, L., and Gao, W., Synthesis of LiFePO4 carbon nanotube core–shell nanowires with a high-energy efficient method for superior lithium ion battery cathodes, J. Power Sources, 2015, vol. 291, pp. 209–214.

    Article  CAS  Google Scholar 

  30. Eftekhari, A., LiFePO4/C nanocomposites for lithium-ion batteries, J. Power Sources, 2017, vol. 3431, pp. 395–411.

    Article  CAS  Google Scholar 

  31. Zuo, D., Tian, G., Li, X., Chen, D., and Shu, K., Recent progress in surface coating of cathode materials for lithium ion secondary batteries, J. Alloys Compd., 2017, vol. 706, pp. 24–40.

    Article  CAS  Google Scholar 

  32. Li, P., Zhang, K., and Park, J.H., Dual or multi carbonaceous coating strategies for next-generation batteries, J. Mater. Chem. A, 2018, vol. 6, pp. 1900–1914.

    Article  CAS  Google Scholar 

  33. Rong, C.-B., Poudyal, N., Chaubey, G.S., Nandwana, V., Liu, Y., Wu, Y.Q., Kramer, M.J., Kozlov, M.E., Baughman, R.H., and Liu, J.P., High thermal stability of carbon-coated L10–FePtL10–FePt nanoparticles prepared by salt-matrix annealing, J. Appl. Phys., 2017, vol. 103, paper 07E131.

  34. Iarchuk, A.R., Nikitina, V.A., Karpushkin, E.A., Sergeyev, V.G., Antipov, E.V., Stevenson, K.J., and Abakumov, A.M., Influence of carbon coating on intercalation kinetics and transport properties of LiFePO4, ChemElectroChem, 2019, vol. 6, no. 19, pp. 5090–5100.

    Article  CAS  Google Scholar 

  35. Hu, Y., Ma, X., Guo, P., Jaeger, F., and Wang, Z., 3D graphene-encapsulated Li3V2(PO4)3 microspheres as a high-performance cathode material for energy storage, J. Alloys Compd., 2017, vol. 723, pp. 873–879.

    Article  CAS  Google Scholar 

  36. Wang, B., Jin, F., Xie, Y., Luo, H., Wang, F., Ruan, T., Wang, D., Zhou, Y., and Dou, S., Holey graphene modified LiFePO4 hollow microsphere as an efficient binary sulfur host for high-performance lithium-sulfur batteries, Energy Storage Mater., 2020, vol. 26, pp. 433–442.

    Article  Google Scholar 

  37. Wang, G., Ma, Z., Shao, G., Kong, L., and Gao, W., Synthesis of LiFePO4@carbon nanotube core–shell nanowires with a high-energy efficient method for superior lithium ion battery cathodes, J. Power Sources, 2015, vol. 291, pp. 209–214.

    Article  CAS  Google Scholar 

  38. Varzi, A., Ramirez-Castro, C., Balducci, A., and Passerini, S., Performance and kinetics of LiFePO4–carbon bi-material electrodes for hybrid devices: a comparative study between activated carbon and multi-walled carbon nanotubes, J. Power Sources, 2015, vol. 273, pp. 1016–1022.

    Article  CAS  Google Scholar 

  39. Tu, X., Zhou, Y., Tian, X., Song, Y., Deng, C., and Zhu, H., Monodisperse LiFePO4 microspheres embedded with well-dispersed nitrogen-doped carbon nanotubes as high-performance positive electrode material for lithium-ion batteries, Electrochim. Acta, 2016, vol. 222, pp. 64–73.

    Article  CAS  Google Scholar 

  40. Qiao, Y.Q., Feng, W.L., Li, J., and Shen, T.D., Ultralong cycling stability of carbon-nanotube/LiFePO4 nanocomposites as electrode materials for lithium-ion batteries, Electrochim. Acta, 2017, vol. 232, pp. 323–331.

    Article  CAS  Google Scholar 

  41. Tu, X., Zhou, Y., and Song, Y., Freeze-drying synthesis of three-dimensional porous LiFePO4 modified with well-dispersed nitrogen-doped carbon nanotubes for high-performance lithium-ion batteries, Appl. Surf. Sci., 2017, vol. 400, pp. 329–338.

    Article  CAS  Google Scholar 

  42. Wang, Z. and Lu, Y., Amorphous FePO4/carbon nanotube cathode preparation via in situ nanoprecipitation and coagulation in a microreactor, ACS Omega, 2019, vol. 4, no. 12, pp. 14790–14799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li, W., Garg, A., Le, M.L.P., Ruhatiya, C., Gao, L., and Tran, V.M., Electrochemical performance investigation of LiFePO4/C0.15–x (x = 0.05, 0.1, 0.15 CNTs) electrodes at various calcination temperatures: experimental and intelligent modelling approach, Electrochim. Acta, 2020, vol. 330, paper 135314.

  44. Xiao, L., Cao, Y., Henderson, W.A., Sushko, M.L., Shao, Y., Xiao, J., Wang, W., Engelhard, M.H., Nie, Z., and Liu, J., Hard carbon nanoparticles as high-capacity, high-stability anodic materials for Na-ion batteries, Nano Energy, 2016, vol. 19, pp. 279–284.

    Article  CAS  Google Scholar 

  45. Bian, D., Sun, Y., Sheng, Li., Tian, Y., Yang, Z., Fan, X., and Zhang, W., A novel process to recycle spent LiFePO4 for synthesizing LiFePO4/C hierarchical microflowers, Electrochim. Acta, 2016, vol. 190, pp. 134–140.

    Article  CAS  Google Scholar 

  46. Yang, Y.X., Zheng, X.H., Cao, H.B., Zhao, C.L., Lin, X., Ning, P.G., Zhang, Y., Jin, W., and Sun, Z., A closed-loop process for selective metal recovery from spent lithium iron phosphate batteries through mechanochemical activation, ACS Sustainable Chem. Eng., 2017, vol. 5, no. 11, pp. 9972–9980.

    Article  CAS  Google Scholar 

  47. Meng, Q., Duan, J.G., Zhang, Y.J., and Dong, P., Novel efficient and environmentally friendly recovering of high performance LiMnPO4/C cathode powders from spent LiMn2O4 batteries, J. Ind. Eng. Chem., 2019, vol. 80, pp. 633–639.

    Article  CAS  Google Scholar 

  48. Ivanishchev, A.V., Ivanishcheva, I.A., and Dixit, A., LiFePO4-based composite electrode material: synthetic approaches, peculiarities of the structure, and regularities of ionic transport processes, Russ. J. Electrochem., 2019, vol. 55, no. 8, pp. 719–737.

    Article  CAS  Google Scholar 

  49. Xu, B., Dong, P., Duan, J.G., Wang, D., Huang, X.S., and Zhang, Y.J., Regenerating the used LiFePO4 to high performance cathode via mechanochemical activation assisted V5+ doping, Ceram. Int., 2019, vol. 45, no. 9, pp. 11792–11801.

    Article  CAS  Google Scholar 

  50. Kosova, N.V., Podgornova, O.A., Volfkovich, Y.M., and Sosenkin, V.E., Optimization of the cathode porosity via mechanochemical synthesis with carbon black, J. Solid State Electrochem., 2021, vol. 25, pp. 1029–1037.https://doi.org/10.1007/s10008-020-04877-8

    Article  CAS  Google Scholar 

  51. Bograchev, D.A., Volfkovich, Y.M., Sosenkin, V.E., Podgornova, O.A., and Kosova, N.V., The influence of porous structure on the electrochemical properties of LiFe0.5Mn0.5PO4 cathode material prepared by mechanochemically assisted solid-state synthesis, Energies, 2020, vol. 13, no. 3, paper 542.

  52. Kapaev, R., Chekannikov, A., Novikova, S., Yaroslavtsev, S., Kulova, T., Rusakov, V., Scundin, A., and Yaroslavtsev, A., Mechanochemical treatment of maricite-type NaFePO4 for achieving high electrochemical performance, J. Solid State Electrochem., 2017, vol. 21, pp. 2373–2380.

    Article  CAS  Google Scholar 

  53. Kolesnikov, A., Milyutina, A., Desyatov, A., and Kolesnikov, V., Electroflotation recovery of highly dispersed carbon materials from aqueous solutions of electrolyte, Sep. Purif. Technol., 2019, vol. 209, pp. 73–78.

    Article  CAS  Google Scholar 

  54. Gryzlov, D.Yu., Novikova, S.A., Kulova, T.L., Skundin, A.M., and Yaroslavtsev, A.B., The effect of particle size on the processes of charging and discharging of the LiFe0.97Ni0.03PO4/C/Ag cathode material, Russ. J. Electrochem., 2018, vol. 54, pp. 442–450.

    Article  CAS  Google Scholar 

  55. Nethravathi, C. and Rajamathi, M., Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide, Carbon, 2008, vol. 46, pp. 1994–1998.

    Article  CAS  Google Scholar 

  56. Zhu, Y.-R., Wang, P., Yi, T.-F., Denga, L., and Xie, Y., Improved high-rate performance of Li4Ti5O12/carbon nanotube nanocomposite anode for lithium-ion batteries, Solid State Ionics, 2015, vol. 276, pp. 84–89.

    Article  CAS  Google Scholar 

  57. Stenina, I.A., Shaydullin, R.R., Desyatov, A.V., Kulova, T.L., and Yaroslavtsev, A.B., Effect of carbon and N-doped carbon nanomaterials on the electrochemical performance of lithium titanate-based composites, Electrochim. Acta, 2020, vol. 364, paper 137330.

Download references

ACKNOWLEDGMENTS

In this study, the scanning electron microscopy was performed used shared experimental facilities supported by IGIC RAS state assignment.

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 20-08-00769.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Stenina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stenina, I.A., Minakova, P.V., Kulova, T.L. et al. LiFePO4/Carbon Nanomaterial Composites for Cathodes of High-Power Lithium Ion Batteries. Inorg Mater 57, 620–628 (2021). https://doi.org/10.1134/S0020168521060108

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168521060108

Keywords:

Navigation