Skip to main content
Log in

Thermodynamic Properties of AuSb2

  • Published:
Inorganic Materials Aims and scope

Abstract—

We have for the first time determined the temperature dependence of heat capacity for aurostibite, AuSb2, by adiabatic calorimetry and calculated its standard thermodynamic functions in a wide temperature range. At a temperature of 298.15 K, we have obtained \(C_{p}^{^\circ }\) = 76.01 ± 0.15 J/(mol K), S° = 133.4 ± 0.3 J/(mol K), Н°(298.15 K) − Н°(0)= 17.39 ± 0.03 kJ/mol, and Ф° = 75.02 ± 0.15 J/(mol K). Using previously reported data and the present results, we have found ΔfG°(298.15) = −11.36 ± 0.90 kJ/mol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Graham, A.R. and Kaiman, S., Aurostibite, AuSb2; a new mineral in the pyrite group, Am. Mineral., 1952, vol. 37, pp. 461–469.

    CAS  Google Scholar 

  2. Lyakishev, N.P., Diagrammy sostoyaniya dvoinykh metallicheskikh sistem. Spravochnik (Phase Diagrams of Binary Metallic Systems: A Handbook), Moscow: Mashinostroenie, 1997.

  3. Mori, H. and Yasuda, H., Formation of AuSb2 compound clusters by spontaneous alloying, Intermetallics, 1993, vol. 1, pp. 35–40.

    Article  CAS  Google Scholar 

  4. Liu, H.S., Liu, C.L., Wang, C., Jin, Z.P., and Ishida, K., Thermodynamic modeling of the Au−In−Sb ternary system, J. Electron. Mater., 2003, vol. 32, no. 2, pp. 81–88.

    Article  CAS  Google Scholar 

  5. Lee, M.C., Fecht, H.J., Allen, J.L., Perepezko, J.H., Ohsaka, K., and Jonson, W.L., The glass transition, crystallization and melting in Au−Pb−Sb alloys, Mater. Sci. Eng., 1988, vol. 97, pp. 301–305.

    Article  CAS  Google Scholar 

  6. Kim, J.H., Jeong, S.W., and Lee, H.M., A thermodynamic study of phase equilibria in the Au−Sb−Sn solder system, J. Electron. Mater., 2002, vol. 31, no. 6, pp. 557–563.

    Article  CAS  Google Scholar 

  7. Chevalier, P.-Y., A thermodynamic evaluation of the Au–Sb and Au–Tl systems, Thermochim. Acta, 1989, vol. 155, pp. 211–225.

    Article  CAS  Google Scholar 

  8. Itagaki, K., Measurements of heat of fusion and specific heat of gold binary compounds and derivation of excess free energy of mixing in liquid gold binary alloys, J. Jpn. Inst. Met., 1976, vol. 40, no. 10, pp. 1038–1046.

    Article  CAS  Google Scholar 

  9. Wallbrecht, P.C., Blachnik, R., and Mills, K.C., The heat capacity and enthalpy of some Hume-Rothery phases formed by copper, silver and gold. Part I. Cu + Sb, Ag + Sb, Au + Sb, Au + Bi systems, Thermochim. Acta, 1981, vol. 45, no. 2, pp. 189–198.

    Article  CAS  Google Scholar 

  10. Bottema, J.A. and Jaeger, F.M., On the law of additive atomic heats in intermetallic compounds. IX–Compounds of tin and gold, and of gold and antimony, Proc. Acad. Sci. Amsterdam, 1932, vol. 35, pp. 916–928.

    CAS  Google Scholar 

  11. Jaeger, F.M. and Bottema, J.A., Le determination exacte des chaleurs specifiques aux temperatures elevee: loi de Neumann–Joule–Kopp–Regnault concernant l’addivite des chaleurs atomiques des elements dans leur combinaisons chimiques, Rec., Trav. Chim., 1933, vol. 52, no. 2, pp. 89–111.

    Article  CAS  Google Scholar 

  12. Medvedev, V.A., Bergman, G.A., et al., Termicheskie konstanty veshchestv (Thermal Constants of Substances), Glushko, V.P., Ed., Moscow: VINITI, 1968, issue VI.

  13. Malyshev, V.V., Mil’ner, G.A., Sorkin, E.L., and Shibakin, V.F., Automatic low temperature calorimeter, Prib. Tekh. Eksp., 1985, vol. 6, pp. 195–197.

    Google Scholar 

  14. NIST. Atomic Weights and Isotopic Compositions. http://www.physics.nist.gov/PhysRefData/Compositions.

  15. Gurevich, V.M. and Khlyustov, V.G., Calorimeter for determining low-temperature heat capacity of minerals. Heat capacity of quartz from 9 to 300 K, Geokhimiya, 1979, no. 6, pp. 829–839.

  16. Jena, A.K. and Bever, M.B., The heat of formation of the compound AuSb2 and the partial enthalpies and enthalpy interaction coefficients of antimony and gold in liquid tin, Trans. Metall. Soc. AIME, 1968, vol. 242, pp. 1453–1454.

    CAS  Google Scholar 

  17. http://www.chem.msu.ru/cgi-bin/tkv.pl?show=welcome.html

Download references

ACKNOWLEDGMENTS

In this work, we used equipment at the Shared Physical Characterization Facilities Center, Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences.

Funding

This work was supported by the Russian Federation Ministry of Science and Higher Education (state research target for the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, basic research).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Tyurin.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tyurin, A.V., Chareev, D.A. & Polotnyanko, N.A. Thermodynamic Properties of AuSb2 . Inorg Mater 56, 1229–1233 (2020). https://doi.org/10.1134/S002016852012016X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002016852012016X

Keywords:

Navigation