Skip to main content
Log in

Transition of Metastable Pyrrhotites to a Stable Phase State

  • Published:
Inorganic Materials Aims and scope

Abstract

Equilibrium phase relations of synthetic minerals prepared by annealing metastable iron sulfides, followed by prolonged isothermal storage in the Earth atmosphere, have been studied by X-ray diffraction. The results demonstrate that prolonged storage of synthetic pyrrhotites annealed at different temperatures makes it possible to identify metastable and stable phases of Fe and S compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Rickard, D. and Luther, G., Chemistry of iron sulfides, Chem. Rev., 2007, vol. 107, pp. 514–565.

    Article  CAS  Google Scholar 

  2. Novikov, G.V., Egorov, V.K., and Sokolov, Yu.A., Pirrotiny: kristallicheskaya i magnitnaya struktura (Pyrrhotites: Crystal and Magnetic Structures), Moscow: Nauka, 1988.

  3. Deer, W.A., Howie, R.A., and Zussman, J., Rock-Forming Minerals, New York: Wiley, 1962–1963, vol. 5.

  4. Ward, J., The structure and properties of some iron sulphides, Rev. Pure Appl. Chem., 1970, vol. 20, pp. 175–206.

    CAS  Google Scholar 

  5. Fleet, M.E., Structural aspects of the marcasite–pyrite transformation, Can. Mineral., 1970, vol. 10, pp. 225–231.

    CAS  Google Scholar 

  6. Gait, R.I. and Dumka, D., Morphology of pyrite from the Nanisivik Mine, Baffin Island, Northwest Territories, Can. Mineral., 1986, vol. 24, pp. 685–688.

    CAS  Google Scholar 

  7. Ono, S. and Kikegawa, T., High-pressure study of FeS, between 20 and 120 GPa, using synchrotron X-ray powder diffraction, Am. Mineral., 2006, vol. 91, pp. 1941–1944.

    Article  CAS  Google Scholar 

  8. Avril, C., Malavergne, V., Caracas, R., Zanda, B., Reynard, B., Charon, E., Bobocioiu, E., Brunet, F., Borensztajn, S., Pont, S., Tarrida, M., and Guyot, F., Raman spectroscopic properties and Raman identification of CaS–MgS–MnS–FeS–Cr2FeS4 sulfides in meteorites and reduced sulfur-rich systems, Meteorit. Planet. Sci., 2013, vol. 48, pp. 1415–1426.

    Article  CAS  Google Scholar 

  9. Skála, R., Císařová, I., and Drábek, M., Inversion twinning in troilite, Am. Mineral., 2006, vol. 91, pp. 917–921.

    Article  Google Scholar 

  10. Wang, H. and Salveson, I., A review on the mineral chemistry of the non-stoichiometric iron sulphide, Fe1 –xS (0 ≤ x ≤ 0.125): polymorphs, phase relations and transitions, electronic and magnetic structures, Phase Transitions, 2005, vol. 78, pp. 547–567.

    Article  CAS  Google Scholar 

  11. Onufrienock, V.V. and Zvegintzev, A.G., Temperature magnetic hysteresis of pirrotines, Geomagn. Aeron., 1981, vol. 21, pp. 575–577.

    Google Scholar 

  12. Onufrienok, V.V. and Zvegintsev, A.G., Magnetic properties and crystal structure of iron sulfides in the composition range FeS–FeS1.18, Izv. Akad. Nauk SSSR,Neorg. Mater., 1982, vol. 18, no. 3, pp. 366–371.

    CAS  Google Scholar 

  13. Dorogina, G.A., Gulyaeva, R.I., Selivanov, E.N., and Balakirev, V.F., Thermal and thermomagnetic properties of pyrrhotites, Russ. J. Inorg. Chem., 2015, vol. 60, no. 3, pp. 301–306.

    Article  CAS  Google Scholar 

  14. Lilies, D.C. and de Villiers, J.P.R., Redetermination of the structure of 5C pyrrhotite at low temperature and at room temperature, Am. Mineral., 2012, vol. 97, pp. 257–261.

    Article  Google Scholar 

  15. Selivanov, E.N. and Gulyaeva, R.I., Thermal expansion and phase transformations of natural pyrrhotite, Russ. J. Inorg. Mater., 2008, vol. 44, pp. 506–511.

    Google Scholar 

  16. Zvegintsev, A.G. and Onufrienok, V.V., Magnetic properties of pyrrhotites that resulted from pyrite decomposition, Geomagn. Aeron., 1981, vol. 21, no. 4, pp. 763–765.

    Google Scholar 

  17. Fleet, M.E., On the lattice parameters and superstructures of pyrrhotites, Am. Mineral., 1968, vol. 53, pp. 1346–1351.

    Google Scholar 

  18. Morimoto, N., Nakazawa, H., Nishiguchi, K., and Tokonami, M., Stoichiometric compounds with composition Fen– 1|Sn (n > 8), Science, 1970, vol. 168, pp. 964–966.

    Article  CAS  Google Scholar 

  19. Arnold, R.G., The pyrrhotite–pyrite relationship, Ann. Rep. Dir. Geophys. Lab., 1956, vol. 55, pp. 177–183.

    Google Scholar 

  20. Arnold, R.G., Equilibrium relation between pyrrhotite and pyrite from 325 to 743°C, Econ. Geol., 1962, vol. 57, pp. 72–90.

    Article  CAS  Google Scholar 

  21. Kullerud, G. and Yoder, H.S., Pyrite stability relations in the Fe–S system, Econ. Geol., 1959, vol. 54, pp. 533–572.

    Article  CAS  Google Scholar 

  22. Gronvold, F. and Haraldsen, H., On the phase relations of synthetic and natural pyrrhotites (Fe1 –x–S), Acta Chem. Scand., 1952, vol. 6, pp. 1452–1469.

    Article  CAS  Google Scholar 

  23. Izawa, E., Crystallography and stability of pyrrhotites, Econ. Geol., 1975, vol. 70, pp. 824–833.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Onufrienok.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Onufrienok, V.V., Chzhan, A.V., Bondarenko, G.V. et al. Transition of Metastable Pyrrhotites to a Stable Phase State. Inorg Mater 56, 898–902 (2020). https://doi.org/10.1134/S0020168520090137

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168520090137

Keywords:

Navigation